相關習題
 0  236522  236530  236536  236540  236546  236548  236552  236558  236560  236566  236572  236576  236578  236582  236588  236590  236596  236600  236602  236606  236608  236612  236614  236616  236617  236618  236620  236621  236622  236624  236626  236630  236632  236636  236638  236642  236648  236650  236656  236660  236662  236666  236672  236678  236680  236686  236690  236692  236698  236702  236708  236716  266669 

科目: 來源: 題型:填空題

16.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的離心率為2,且兩條漸近線與拋物線y2=2px(p>0)的準線交于A,B兩點,O為坐標原點,若${S_{△AOB}}=\sqrt{3}$,則拋物線的方程為y2=4x.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.執(zhí)行如圖所示的程序框圖,若輸出的x值為31,則a的值為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目: 來源: 題型:選擇題

14.若復數(shù)$z=\frac{4-2i}{1+i}$(i為虛數(shù)單位),則|z|=( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{10}$

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知數(shù)列{an}與{bn}的前n項和分別為An和Bn,且對任意n∈N*,an+1-an=2(bn+1-bn)恒成立.
(1)若An=n2,b1=2,求Bn;
(2)若對任意n∈N*,都有an=Bn及$\frac{_{2}}{{a}_{1}{a}_{2}}$+$\frac{_{3}}{{a}_{2}{a}_{3}}$+$\frac{_{4}}{{a}_{3}a4}$+…+$\frac{_{n+1}}{{a}_{n}{a}_{n+1}}$<$\frac{1}{3}$成立,求正實數(shù)b1的取值范圍;
(3)若a1=2,bn=2n,是否存在兩個互不相等的整數(shù)s,t(1<s<t),使$\frac{{A}_{1}}{{B}_{1}}$,$\frac{{A}_{s}}{{B}_{s}}$,$\frac{{A}_{t}}{{B}_{t}}$成等差數(shù)列?若存在,求出s,t的值;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

12.如圖,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),圓O:x2+y2=b2,過橢圓C的上頂點A的直線l:y=kx+b分別交圓O、橢圓C于不同的兩點P、Q,設$\overrightarrow{AP}$=λ$\overrightarrow{PQ}$.
(1)若點P(-3,0),點Q(-4,-1),求橢圓C的方程;
(2)若λ=3,求橢圓C的離心率e的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

11.如圖,在四棱錐P-ABCD中,底面ABCD是矩形,點E、F分別是棱PC和PD的中點.
(1)求證:EF∥平面PAB;
(2)若AP=AD,且平面PAD⊥平面ABCD,證明:AF⊥平面PCD.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知函數(shù)f(x)=|x-1|+|x-2|,記f(x)的最小值為k.
(1)解不等式:f(x)≤x+1;
(2)是否存在正數(shù)a、b,同時滿足:2a+b=k,$\frac{1}{a}$+$\frac{2}$=4?若存在,求出a、b的值,若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知函數(shù)f(x)=-2xlnx+x2-2ax+a2.記g(x)為f(x)的導函數(shù).
(1)若曲線y=f(x)在點(1,f(1))處的切線垂直于直線x+y+3=0,求a的值;
(2)討論g(x)=0的解的個數(shù);
(3)證明:對任意的0<s<t<2,恒有$\frac{g(s)-g(t)}{s-t}$<1.

查看答案和解析>>

科目: 來源: 題型:選擇題

8.在△ABC中,角A、B、C的對邊分別為a,b,c,且b(2sinB+sinA)+(2a+b)sinA=2csinC,則C=( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目: 來源: 題型:選擇題

7.在區(qū)間[-3,3]中隨機取一個實數(shù)k,則事件“直線y=kx與圓(x-2)2+y2=1相交”發(fā)生的概率為( 。
A.$\frac{\sqrt{3}}{9}$B.$\frac{\sqrt{3}}{6}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步練習冊答案