相關(guān)習(xí)題
 0  257347  257355  257361  257365  257371  257373  257377  257383  257385  257391  257397  257401  257403  257407  257413  257415  257421  257425  257427  257431  257433  257437  257439  257441  257442  257443  257445  257446  257447  257449  257451  257455  257457  257461  257463  257467  257473  257475  257481  257485  257487  257491  257497  257503  257505  257511  257515  257517  257523  257527  257533  257541  266669 

科目: 來源: 題型:

【題目】如下圖所示,對應(yīng)關(guān)系f是從A到B的映射的是(
A.
B.
C.
D.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=2cosxsin(x+ )﹣a,且x=﹣ 是方程f(x)=0的一個解.
(1)求實數(shù)a的值及函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(3)若關(guān)于x的方程f(x)=b在區(qū)間(0, )上恰有三個不相等的實數(shù)根x1 , x2 , x3 , 直接寫出實數(shù)b的取值范圍及x1+x2+x3的取值范圍(不需要給出解題過程)

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖是根據(jù)某班50名同學(xué)在某次數(shù)學(xué)測驗中的成績(百分制)繪制的概率分布直方圖,其中成績分組區(qū)間為:[40,50),[50,60),…,[80,90),[90,100].

(1)求圖中a的值;
(2)計算該班本次的數(shù)學(xué)測驗成績不低于80分的學(xué)生的人數(shù);
(3)根據(jù)頻率分布直方圖,估計該班本次數(shù)學(xué)測驗成績的平均數(shù)與中位數(shù)(要求中位數(shù)的估計值精確到0.1)

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=x2+bx+c(b,c∈R),并設(shè)
(1)若F(x)圖像在x=0處的切線方程為x﹣y=0,求b、c的值;
(2)若函數(shù)F(x)是(﹣∞,+∞)上單調(diào)遞減,則 ①當(dāng)x≥0時,試判斷f(x)與(x+c)2的大小關(guān)系,并證明之;
②對滿足題設(shè)條件的任意b、c,不等式f(c)﹣Mc2≤f(b)﹣Mb2恒成立,求M的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】一個袋子中裝有三個編號分別為1,2,3的紅球和三個編號分別為1,2,3的白球,三個紅球按其編號分別記為a1 , a2 , a3 , 三個白球按其編號分別記為b1 , b2 , b3 , 袋中的6個球除顏色和編號外沒有任何差異,現(xiàn)從袋中一次隨機地取出兩個球,
(1)列舉所有的基本事件,并寫出其個數(shù);
(2)規(guī)定取出的紅球按其編號記分,取出的白球按其編號的2倍記分,取出的兩個球的記分之和為一次取球的得分,求一次取球的得分不小于6的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知向量 的夾角為60°.
(1)若 都是單位向量,求|2 + |;
(2)若| |=2, + 與2 ﹣5 垂足,求| |.

查看答案和解析>>

科目: 來源: 題型:

【題目】(本小題滿分12分) 某中學(xué)的環(huán)保社團(tuán)參照國家環(huán)境標(biāo)準(zhǔn)制定了該校所在區(qū)域空氣質(zhì)量指數(shù)與空氣質(zhì)量等級對應(yīng)關(guān)系如下表(假設(shè)該區(qū)域空氣質(zhì)量指數(shù)不會超過):

空氣質(zhì)量指數(shù)

空氣質(zhì)量等級

級優(yōu)

級良

級輕度污染

級中度污染

級重度污染

級嚴(yán)重污染

該社團(tuán)將該校區(qū)在天的空氣質(zhì)量指數(shù)監(jiān)測數(shù)據(jù)作為樣本,繪制的頻率分布直方圖如下圖,把該直方圖所得頻率估計為概率

請估算年(以天計算)全年空氣質(zhì)量優(yōu)良的天數(shù)(未滿一天按一天計算);

)該校、日將作為高考考場,若這兩天中某天出現(xiàn)級重度污染,需要凈化空氣費用元,出現(xiàn)級嚴(yán)重污染,需要凈化空氣費用元,記這兩天凈化空氣總費用為元,求的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,四邊形為菱形,四邊形為平行四邊形,設(shè)相交于點,

1)證明:平面平面

2)若與平面所成角為60°,求二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】近代統(tǒng)計學(xué)的發(fā)展起源于二十世紀(jì)初,它是在概率論的基礎(chǔ)上發(fā)展起來的,統(tǒng)計性質(zhì)的工作可以追溯到遠(yuǎn)古的“結(jié)繩記事”和《二十四史》中大量的關(guān)于我人口、錢糧、 水文、天文、地震等資料的記錄.近幾年,霧霾來襲,對某市該年11月份的天氣情況進(jìn)行統(tǒng)計,結(jié)果如下:表一

日期

天氣

日期

天氣

由于此種情況某市政府為減少霧霾于次年采取了全年限行的政策.

下表是一個調(diào)査機構(gòu)對比以上兩年11月份(該年不限行 天、次年限行天共 天)的調(diào)查結(jié)果:

表二

不限行

限行

總計

沒有霧霾

有霧霾

總計

(1)請由表一數(shù)據(jù)求 ,并求在該年11月份任取一天,估計該市是晴天的概率;

(2)請用統(tǒng)計學(xué)原理計算若沒有 的把握認(rèn)為霧霾與限行有關(guān)系,則限行時有多少天沒有霧霾?

(由于不能使用計算器,所以表中數(shù)據(jù)使用時四舍五入取整數(shù))

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,以為頂點的六面體中, 均為等邊三角形,且平面平面, 平面, .

(1)求證: 平面;

(2)求此六面體的體積.

查看答案和解析>>

同步練習(xí)冊答案