科目: 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和是Sn , 且Sn+ an=1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log4(1﹣Sn+1)(n∈N*),Tn= + +…+ ,求使Tn≥ 成立的最小的正整數(shù)n的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知某食品廠需要定期購買食品配料,該廠每天需要食品配料200千克,配料的價(jià)格為1.8元/千克,每次購買配料需支付運(yùn)費(fèi)236元,每次購買來的配料還需支付保管費(fèi)用,其標(biāo)準(zhǔn)如下:7天以內(nèi)(含7天),無論重量多少,均按10元/天支付;超出7天以外的天數(shù),根據(jù)實(shí)際剩余配料的重量,以每天0.03元/千克支付.
(1)當(dāng)9天購買一次配料時(shí),求該廠用于配料的保管費(fèi)用是多少元?
(2)設(shè)該廠天購買一次配料,求該廠在這天中用于配料的總費(fèi)用(元)關(guān)于的函數(shù)關(guān)系式,并求該廠多少天購買一次配料才能使平均每天支付的費(fèi)用最少?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知二次函數(shù),關(guān)于實(shí)數(shù)的不等式的解集為.
(1)當(dāng)時(shí),解關(guān)于的不等式: ;
(2)是否存在實(shí)數(shù),使得關(guān)于的函數(shù)()的最小值為?若存在,求實(shí)數(shù)的值;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓 ,圓 .
(1)求兩圓公共弦所在直線的方程;
(2)直線ι過點(diǎn)(4,﹣4)與圓C1相交于A,B兩點(diǎn),且 ,求直線ι的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在邊長為25cm的正方形中挖去邊長為23cm的兩個(gè)等腰直角三角形,現(xiàn)有均勻的粒子散落在正方形中,問粒子落在中間帶形區(qū)域的概率是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)既有一個(gè)極小值又有一個(gè)極大值,求的取值范圍;
(3)若存在,使得當(dāng)時(shí), 的值域是,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列中, ,且對(duì)任意正整數(shù)都成立,數(shù)列的前項(xiàng)和為.
(1)若,且,求;
(2)是否存在實(shí)數(shù),使數(shù)列是公比為1的等比數(shù)列,且任意相鄰三項(xiàng)按某順序排列后成等差數(shù)列,若存在,求出所有的值;若不存在,請(qǐng)說明理由;
(3)若,求.(用表示).
查看答案和解析>>
科目: 來源: 題型:
【題目】有一個(gè)容量為60的樣本(60名學(xué)生的數(shù)學(xué)考試成績),分組情況如表:
分組 | 0.5~20.5 | 20.5~40.5 | 40.5~60.5 | 60.5~80.5 | 80.5~100.5 |
頻數(shù) | 3 | 6 | 12 | ||
頻率 | 0.3 |
(1)填出表中所剩的空格;
(2)畫出頻率分布直方圖.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,三棱錐P﹣ABC中,PB⊥底面ABC,∠BCA=90°,PB=BC=CA=2,E為PC的中點(diǎn),M為AB的中點(diǎn),點(diǎn)F在PA上,且2PF=FA.
(1)求證:BE⊥平面PAC;
(2)求證:CM∥平面BEF;
(3)求平面ABC與平面BEF所成的二面角的平面角(銳角)的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且a+b+c=16.
(1)若a=4,b=5,求cosC的值;
(2)若sinA+sinB=3sinC,且△ABC的面積S=18sinC,求a和b的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com