科目: 來源: 題型:
【題目】某產(chǎn)品生產(chǎn)廠家生產(chǎn)一種產(chǎn)品,每生產(chǎn)這種產(chǎn)品 (百臺),其總成本為萬元,其中固定成本為42萬元,且每生產(chǎn)1百臺的生產(chǎn)成本為15萬元總成本固定成本生產(chǎn)成本銷售收入萬元滿足,假定該產(chǎn)品產(chǎn)銷平衡即生產(chǎn)的產(chǎn)品都能賣掉,根據(jù)上述條件,完成下列問題:
寫出總利潤函數(shù)的解析式利潤銷售收入總成本;
要使工廠有盈利,求產(chǎn)量的范圍;
工廠生產(chǎn)多少臺產(chǎn)品時,可使盈利最大?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),若同時滿足以下條件:
①在D上單調(diào)遞減或單調(diào)遞增;
②存在區(qū)間,使在 上的值域是,那么稱為閉函數(shù).
(1)求閉函數(shù)符合條件②的區(qū)間 ;
(2)判斷函數(shù)是不是閉函數(shù)?若是請找出區(qū)間;若不是請說明理由;
(3)若是閉函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的離心率為,短軸長為.
(1)求橢圓的方程;
(2)設(shè), 是橢圓上關(guān)于軸對稱的任意兩個不同的點,連接交橢圓于另一點,證明直線與軸相交于定點;
(3)在(2)的條件下,過點的直線與橢圓交于, 兩點,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=x+ +lnx,a∈R. (Ⅰ)若f(x)在x=1處取得極值,求a的值;
(Ⅱ)若f(x)在區(qū)間(1,2)上單調(diào)遞增,求a的取值范圍;
(Ⅲ)討論函數(shù)g(x)=f'(x)﹣x的零點個數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖C,D是以AB為直徑的圓上的兩點,,F是AB上的一點,且,將圓沿AB折起,使點C在平面ABD的射影E在BD上,已知
(1)求證:AD平面BCE
(2)求證:AD//平面CEF;
(3)求三棱錐A-CFD的體積.
查看答案和解析>>
科目: 來源: 題型:
【題目】某廠家擬在2019年舉行促銷活動,經(jīng)過調(diào)查測算,該產(chǎn)品的年銷量(即該廠的年產(chǎn)量)(單位:萬件)與年促銷費用()(單位:萬元)滿足(為常數(shù)),如果不搞促銷活動,則該產(chǎn)品的年銷量只能是1萬件. 已知2019年生產(chǎn)該產(chǎn)品的固定投入為6萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入12萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分).
(1)將該廠家2019年該產(chǎn)品的利潤萬元表示為年促銷費用萬元的函數(shù);
(2)該廠家2019年的年促銷費用投入多少萬元時,廠家利潤最大?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,D是AC的中點,A1D⊥平面ABC,AB=BC,平面BB1D與棱A1C1交于點E.
(1)求證:AC⊥A1B;
(2)求證:平面BB1D⊥平面AA1C1C;
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,橢圓C: + =1(a>b>0)的離心率是 ,且過點( , ).設(shè)點A1 , B1分別是橢圓的右頂點和上頂點,如圖所示過 點A1 , B1引橢圓C的兩條弦A1E、B1F.
(1)求橢圓C的方程;
(2)若直線A1E與B1F的斜率是互為相反數(shù).
①求直線EF的斜率k0②設(shè)直線EF的方程為y=k0x+b(﹣1≤b≤1)設(shè)△A1EF、△B1EF的面積分別為S1和S2 , 求S1+S2的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1所示,在邊長為4的菱形ABCD中,∠DAB=60°,點E,F(xiàn)分別是邊CD,CB的中點,EF∩AC=O,沿EF將△CEF翻折到△PEF,連接PA,PB,PD,得到如圖2所示五棱錐P﹣ABFED,且AP= ,
(1)求證:BD⊥平面POA;
(2)求二面角B﹣AP﹣O的正切值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某中學(xué)利用周末組織教職員工進行了一次秋季登山健身的活動,有N人參加,現(xiàn)將所有參加者按年齡情況分為[20,25),[25,30),[30,35),[35,40),[40,45),[45,50),[50,55)等七組,其頻率分布直方圖如下所示.已知[35,40)這組的參加者是8人.
(1)求N和[30,35)這組的參加者人數(shù)N1;
(2)已知[30,35)和[35,40)這兩組各有2名數(shù)學(xué)教師,現(xiàn)從這兩個組中各選取2人擔(dān)任接待工作,設(shè)兩組的選擇互不影響,求兩組選出的人中都至少有1名數(shù)學(xué)老師的概率;
(3)組織者從[45,55)這組的參加者(其中共有4名女教師,其余全為男教師)中隨機選取3名擔(dān)任后勤保障工作,其中女教師的人數(shù)為x,求x的分布列和均值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com