科目: 來源: 題型:
【題目】將函數(shù)f(x)=2 cos2x﹣2sinxcosx﹣ 的圖象向左平移t(t>0)個(gè)單位,所得圖象對(duì)應(yīng)的函數(shù)為奇函數(shù),則t的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】對(duì)于n∈N* , 若數(shù)列{xn}滿足xn+1﹣xn>1,則稱這個(gè)數(shù)列為“K數(shù)列”.
(Ⅰ)已知數(shù)列:1,m+1,m2是“K數(shù)列”,求實(shí)數(shù)m的取值范圍;
(Ⅱ)是否存在首項(xiàng)為﹣1的等差數(shù)列{an}為“K數(shù)列”,且其前n項(xiàng)和Sn滿足 ?若存在,求出{an}的通項(xiàng)公式;若不存在,請(qǐng)說明理由;
(Ⅲ)已知各項(xiàng)均為正整數(shù)的等比數(shù)列{an}是“K數(shù)列”,數(shù)列 不是“K數(shù)列”,若 ,試判斷數(shù)列{bn}是否為“K數(shù)列”,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,斜三棱柱ABC﹣A1B1C1的底面是直角三角形,∠ACB=90°,點(diǎn)B1在底面內(nèi)的射影恰好是BC的中點(diǎn),且BC=CA=2.
(1)求證:平面ACC1A1⊥平面B1C1CB;
(2)若二面角B﹣AB1﹣C1的余弦值為 ,求斜三棱柱ABC﹣A1B1C1的側(cè)棱AA1的長度.
查看答案和解析>>
科目: 來源: 題型:
【題目】在銳角△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知a=bcosC+ csinB.
(1)若a=2,b= ,求c
(2)設(shè)函數(shù)y= sin(2A﹣30°)﹣2sin2(C﹣15°),求y的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓C: 的離心率為 ,右焦點(diǎn)為F,點(diǎn)B(0,1)在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn) 的直線交橢圓C于M,N兩點(diǎn),交直線x=2于點(diǎn)P,設(shè) , ,求證:λ+μ為定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求的值域;
(2)當(dāng)時(shí),函數(shù)的圖象關(guān)于對(duì)稱,求函數(shù)的對(duì)稱軸.
(3)若圖象上有一個(gè)最低點(diǎn),如果圖象上每點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)縮短到原來的倍,然后向左平移1個(gè)單位可得的圖象,又知的所有正根從小到大依次為,且,求的解析式.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校高三年級(jí)進(jìn)行了一次學(xué)業(yè)水平測(cè)試,用系統(tǒng)抽樣的方法抽取了50名學(xué)生的數(shù)學(xué)成績,準(zhǔn)備進(jìn)行分析和研究.經(jīng)統(tǒng)計(jì),成績的分組及各組的頻數(shù)如下: ,2; ,3; ,10;
15; ,12; ,8.
(1)完成樣本的頻率分布表,畫出頻率分布直方圖;
(2)估計(jì)成績?cè)?5分以下的學(xué)生比例;
(3)請(qǐng)你根據(jù)以上信息去估計(jì)樣本的眾數(shù)、中位數(shù)、平均數(shù)(精確到0.01).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓與軸負(fù)半軸相交于點(diǎn),與軸正半軸相交于點(diǎn).
(1)若過點(diǎn)的直線被圓截得的弦長為,求直線的方程;
(2)若在以為圓心半徑為的圓上存在點(diǎn),使得 (為坐標(biāo)原點(diǎn)),求的取值范圍;
(3)設(shè)是圓上的兩個(gè)動(dòng)點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,如果直線與軸分別交于和,問是否為定值?若是求出該定值;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)已知:“直線與圓相交”; :“有一正根和一負(fù)根”.若為真, 為真,求的取值范圍.
(2)已知橢圓: 與圓: ,雙曲線與橢圓有相同的焦點(diǎn),它的兩條漸近線恰好與圓相切.求雙曲線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com