科目: 來源: 題型:
【題目】廈門市從2003年起每年都舉行國際馬拉松比賽,每年馬拉松比賽期間,都會吸引許多外地游客到廈門旅游,這將極大地推進(jìn)廈門旅游業(yè)的發(fā)展,旅游部門將近六年馬拉松比賽期間外地游客數(shù)量統(tǒng)計(jì)如下表:
年份 | 2012年 | 2013年 | 2014年 | 2015年 | 2016年 | 2017年 |
比賽年份編號 | ||||||
外地游客人數(shù)(萬人) |
(1)若用線性回歸模型擬合與的關(guān)系,求關(guān)于的線性回歸方程;(精確到)
(2)若用對數(shù)回歸模型擬合與的關(guān)系,可得回歸方程,且相關(guān)指數(shù),請用相關(guān)指數(shù)說明選擇哪個模型更合適.(精確到)
參考數(shù)據(jù):,,,;
參考公式:回歸方程中,,;相關(guān)指數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)實(shí)數(shù)c>0,整數(shù)p>1,n∈N* .
(1)證明:當(dāng)x>﹣1且x≠0時,(1+x)p>1+px;
(2)數(shù)列{an}滿足a1> ,an+1= an+ an1﹣p . 證明:an>an+1> .
查看答案和解析>>
科目: 來源: 題型:
【題目】隨機(jī)調(diào)查名性別不同的大學(xué)生是否喜歡打羽毛球,得到如下列聯(lián)表:
男 | 女 | 總計(jì) | |
喜歡打羽毛球 | |||
不喜歡打羽毛球 | |||
總計(jì) |
臨界值表:
參考公式:(其中)
參照臨界值表,下列結(jié)論正確的是( )
A. 在犯錯誤的概率不超過的前提下,認(rèn)為“喜歡打羽毛球與性別有關(guān)”
B. 在犯錯誤的概率不超過的前提下,認(rèn)為“喜歡打羽毛球與性別無關(guān)”
C. 在犯錯誤的概率不超過的前提下,認(rèn)為“喜歡打羽毛球與性別有關(guān)”
D. 在犯錯誤的概率不超過的前提下,認(rèn)為“喜歡打羽毛球與性別無關(guān)”
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四棱柱ABCD﹣A1B1C1D1中,A1A⊥底面ABCD,四邊形ABCD為梯形,AD∥BC,且AD=2BC,過A1、C、D三點(diǎn)的平面記為α,BB1與α的交點(diǎn)為Q.
(1)證明:Q為BB1的中點(diǎn);
(2)求此四棱柱被平面α所分成上下兩部分的體積之比;
(3)若AA1=4,CD=2,梯形ABCD的面積為6,求平面α與底面ABCD所成二面角的大。
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知兩條拋物線E1:y2=2p1x(p1>0)和E2:y2=2p2x(p2>0),過原點(diǎn)O的兩條直線l1和l2 , l1與E1 , E2分別交于A1、A2兩點(diǎn),l2與E1、E2分別交于B1、B2兩點(diǎn).
(1)證明:A1B1∥A2B2;
(2)過O作直線l(異于l1 , l2)與E1、E2分別交于C1、C2兩點(diǎn).記△A1B1C1與△A2B2C2的面積分別為S1與S2 , 求 的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費(fèi)用,并將各地的銷售收益(單位:萬元)繪制成如圖所示的頻率分布直方圖.由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計(jì)數(shù)的.
廣告投入/萬元 | 1 | 2 | 3 | 4 | 5 |
銷售收益/萬元 | 2 | 3 | 2 | 5 | 7 |
(Ⅰ)根據(jù)頻率分布直方圖計(jì)算圖中各小長方形的寬度;
(Ⅱ)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到上表:
表中的數(shù)據(jù)顯示與之間存在線性相關(guān)關(guān)系,求關(guān)于的回歸方程;
(Ⅲ)若廣告投入萬元時,實(shí)際銷售收益為萬元,求殘差.
附:,
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)的最小正周期是,且在區(qū)間上單調(diào)遞減.
(1)求函數(shù)的解析式;
(2)若關(guān)于的方程
在上有實(shí)數(shù)解,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程;
(Ⅰ)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)為曲線上的動點(diǎn),求點(diǎn)到曲線上的距離的最小值的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù)f(x)=1+(1+a)x﹣x2﹣x3 , 其中a>0.
(1)討論f(x)在其定義域上的單調(diào)性;
(2)當(dāng)x∈[0,1]時,求f(x)取得最大值和最小值時的x的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com