相關(guān)習(xí)題
 0  261869  261877  261883  261887  261893  261895  261899  261905  261907  261913  261919  261923  261925  261929  261935  261937  261943  261947  261949  261953  261955  261959  261961  261963  261964  261965  261967  261968  261969  261971  261973  261977  261979  261983  261985  261989  261995  261997  262003  262007  262009  262013  262019  262025  262027  262033  262037  262039  262045  262049  262055  262063  266669 

科目: 來源: 題型:

【題目】如圖,在三棱錐DABC中,底面ABC為正三角形,若,,則三棱錐DABC與三棱錐EABC的公共部分構(gòu)成的幾何體的外接球的體積為(

A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

(1)若恒成立,求的取值范圍;

(2)證明:不等式對于正整數(shù)恒成立,其中為自然對數(shù)的底數(shù).

查看答案和解析>>

科目: 來源: 題型:

【題目】某單位計劃建造一間背面靠墻的小屋,其地面面積為12m2,墻面的高度為3m,經(jīng)測算,屋頂?shù)脑靸r為5800元,房屋正面每平方米的造價為1200元,房屋側(cè)面每平方米的造價為800元,設(shè)房屋正面地面長方形的邊長為m,房屋背面和地面的費用不計.

1)用含的表達(dá)式表示出房屋的總造價;

2)當(dāng)為多少時,總造價最低?最低造價是多少?

查看答案和解析>>

科目: 來源: 題型:

【題目】某廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測標(biāo)準(zhǔn),其合格產(chǎn)品的質(zhì)量與尺寸之間近似滿足關(guān)系式(為大于0的常數(shù)).現(xiàn)隨機(jī)抽取6件合格產(chǎn)品,測得數(shù)據(jù)如下:

對數(shù)據(jù)作了初步處理,相關(guān)統(tǒng)計位的值如下表:

(1)根據(jù)所給數(shù)據(jù),求關(guān)于的回歸方程;

(2)按照某項指標(biāo)測定,當(dāng)產(chǎn)品質(zhì)量與尺寸的比在區(qū)間內(nèi)時為優(yōu)等品.現(xiàn)從抽取的6件合格產(chǎn)品中再任選3件,記為取到優(yōu)等品的件數(shù),試求隨機(jī)變量的分布列和期望.

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為,.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知點.

1)若一條直線經(jīng)過點,且原點到直線的距離為,求該直線的一般式方程;

2)求過點且與原點距離最大的直線的一般式方程,并求出最大距離是多少?

查看答案和解析>>

科目: 來源: 題型:

【題目】已知曲線上的點與定點的距離與它到直線的距離的比是常數(shù),又斜率為的直線與曲線交于不同的兩點。

(Ⅰ)求曲線的方程;

(Ⅱ)若,求 的最大值;

(Ⅲ)設(shè),直線與曲線的另一個交點為,直線與曲線的另一個交點為.和點 共線,求的值。

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,平面底面的中點,是棱上的點,,

1)求證:平面平面;

2)若為棱的中點,求異面直線所成角的余弦值;

3)若二面角大小為,求的長.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,正方形所在平面與四邊形所在平面互相重直,是等腰直角三角形,,.

1)求證:平面;

2)設(shè)線段、的中點分別為、,求所成角的正弦值;

3)求二面角的平面角的正切值.

查看答案和解析>>

科目: 來源: 題型:

【題目】某校為了解該校多媒體教學(xué)普及情況,根據(jù)年齡按分層抽樣的方式調(diào)查了該校50名教師,他們的年齡頻數(shù)及使用多媒體教學(xué)情況的人數(shù)分布如下表:

(1)由以上統(tǒng)計數(shù)據(jù)完成下面的列聯(lián)表,并判斷是否有的把握認(rèn)為以40歲為分界點對是否經(jīng)常使用多媒體教學(xué)有差異?

附:,.

(2)若采用分層抽樣的方式從年齡低于40歲且經(jīng)常使用多媒體的教師中選出6人,再從這6人中隨機(jī)抽取2人,求這2人中至少有1人年齡在30-39歲的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知.

(1)討論的單調(diào)性;

(2)若有三個不同的零點,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案