相關(guān)習題
 0  262614  262622  262628  262632  262638  262640  262644  262650  262652  262658  262664  262668  262670  262674  262680  262682  262688  262692  262694  262698  262700  262704  262706  262708  262709  262710  262712  262713  262714  262716  262718  262722  262724  262728  262730  262734  262740  262742  262748  262752  262754  262758  262764  262770  262772  262778  262782  262784  262790  262794  262800  262808  266669 

科目: 來源: 題型:

【題目】命題:方程表示焦點在軸上的雙曲線:命題:若存在,使得成立.

1)如果命題是真命題,求實數(shù)的取值范圍;

2)如果為假命題,為真命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】給出下列說法:①方程表示的圖形是一個點;②命題,則為真命題;③已知雙曲線的左右焦點分別為,,過右焦點被雙曲線截得的弦長為4的直線有3條;④已知橢圓上有兩點,,若點是橢圓上任意一點,且,直線,的斜率分別為,則為定值;⑤已知命題,滿足是真命題,則實數(shù).其中說法正確的序號是__________.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,橢圓的左、右焦點分別為,,點在橢圓上.

1)求橢圓的方程;

2)若A,B是橢圓上位于x軸上方的兩點,直線與直線交于點P,,求直線的斜率.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)為常數(shù)

(Ⅰ)若是函數(shù)的一個極值點,求此時函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若對任意的,不等式恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】過去大多數(shù)人采用儲蓄的方式將錢儲蓄起來,以保證自己生活的穩(wěn)定,考慮到通貨膨脹的壓力,如果我們把所有的錢都用來儲蓄,這并不是一種很好的方式,隨著金融業(yè)的發(fā)展,普通人能夠使用的投資理財工具也多了起來,為了研究某種理財工具的使用情況,現(xiàn)對年齡段的人員進行了調(diào)查研究,將各年齡段人數(shù)分成5組:,,,,并整理得到頻率分布直方圖:

1)求圖中的a值;

2)采用分層抽樣的方法,從第二組、第三組、第四組中共抽取8人,則三個組中,各抽取多少人;

3)由頻率分布直方圖,求所有被調(diào)查人員的平均年齡.

查看答案和解析>>

科目: 來源: 題型:

【題目】經(jīng)統(tǒng)計某射擊運動員隨機命中的概率可視為,為估計該運動員射擊4次恰好命中3次的概率,現(xiàn)采用隨機模擬的方法,先由計算機產(chǎn)生0到9之間取整數(shù)的隨機數(shù),用0,1,2 沒有擊中,用3,4,5,6,7,8,9 表示擊中,以 4個隨機數(shù)為一組, 代表射擊4次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù):

7525,0293,7140,9857,0347,4373,8638,7815,1417,5550

0371,6233,2616,8045,6011,3661,9597,7424,7610,4281

根據(jù)以上數(shù)據(jù),則可估計該運動員射擊4次恰好命中3次的概率為( )

A. B. C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】設數(shù)列的前n項和為,已知).

(1)求證:數(shù)列為等比數(shù)列;

(2)若數(shù)列滿足:

求數(shù)列的通項公式;

是否存在正整數(shù)n,使得成立?若存在,求出所有n的值;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】若直線x軸,y軸的交點分別為A,B,圓C以線段AB為直徑.

1)求圓C的標準方程;

2)若直線l過點且圓心Cl的距離為1,求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

1)若,求曲線在點處的切線;

2)若函數(shù)在其定義域內(nèi)為增函數(shù),求正實數(shù)的取值范圍;

3)設函數(shù),若在上至少存在一點,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】橢圓的左、右焦點分別為,為橢圓上一動點(異于左、右頂點),若的周長為,且面積的最大值為.

(1)求橢圓的方程;

(2)設是橢圓上兩動點,線段的中點為,的斜率分別為 為坐標原點,且,求的取值范圍.

查看答案和解析>>

同步練習冊答案