科目: 來源: 題型:
【題目】實(shí)數(shù)a,b滿足ab>0且a≠b,由a、b、、按一定順序構(gòu)成的數(shù)列( 。
A. 可能是等差數(shù)列,也可能是等比數(shù)列
B. 可能是等差數(shù)列,但不可能是等比數(shù)列
C. 不可能是等差數(shù)列,但可能是等比數(shù)列
D. 不可能是等差數(shù)列,也不可能是等比數(shù)列
查看答案和解析>>
科目: 來源: 題型:
【題目】已知過原點(diǎn)的動(dòng)直線l與圓相交于不同的兩點(diǎn)A,B.
(1)求線段AB的中點(diǎn)M的軌跡C的方程;
(2)是否存在實(shí)數(shù)k,使得直線L:y=k(x﹣4)與曲線C只有一個(gè)交點(diǎn)?若存在,求出k的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知分別為雙曲線的左、右焦點(diǎn),M為雙曲線右支上一點(diǎn)且滿足,若直線與雙曲線的另一個(gè)交點(diǎn)為N,則的面積為__________.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,設(shè),且,記;
(1)設(shè),其中,試求的單調(diào)區(qū)間;
(2)試判斷弦的斜率與的大小關(guān)系,并證明;
(3)證明:當(dāng)時(shí),.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)點(diǎn),分別是橢園C:的左、右焦點(diǎn),且橢圓C上的點(diǎn)到的距離的最小值為,點(diǎn)M,N是橢圓C上位于x軸上方的兩點(diǎn),且向量與向量平行.
求橢圓C的方程;
當(dāng)時(shí),求的面積;
當(dāng)時(shí),求直線的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐中,底面是邊長為2的菱形,,,平面平面,點(diǎn)為棱的中點(diǎn).
(Ⅰ)在棱上是否存在一點(diǎn),使得平面,并說明理由;
(Ⅱ)當(dāng)二面角的余弦值為時(shí),求直線與平面所成的角.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線,過定點(diǎn)作不垂直于x軸的直線,交拋物線于A,B兩點(diǎn).
(1)設(shè)O為坐標(biāo)原點(diǎn),求證:為定值;
(2)設(shè)線段的垂直分線與x軸交于點(diǎn),求n的取值范圍;
(3)設(shè)點(diǎn)A關(guān)于x軸的對稱點(diǎn)為D,求證:直線過定點(diǎn),并求出定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,是通過某城市開發(fā)區(qū)中心O的兩條南北和東西走向的街道,連結(jié)M,N兩地之間的鐵路線是圓心在上的一段圓弧,若點(diǎn)M在點(diǎn)O正北方向3公里;點(diǎn)N到的距離分別為4公里和5公里.
(1)建立適當(dāng)?shù)淖鴺?biāo)系,求鐵路線所在圓弧的方程;
(2)若該城市的某中學(xué)擬在點(diǎn)O的正東方向選址建分校,考慮環(huán)境問題,要求校址到點(diǎn)O的距離大于4公里,并且鐵路上任意一點(diǎn)到校址的距離不能小于公里,求該校址距點(diǎn)O的最短距離(注:校址視為一個(gè)點(diǎn))
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐中,平面,為線段上一點(diǎn)不在端點(diǎn).
(1)當(dāng)為中點(diǎn)時(shí),,求證:面
(2)當(dāng)為中點(diǎn)時(shí),是否存在,使得直線與平面所成角的正弦值為,若存在求出M的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在正方體ABCD-ABCD中,平面垂直于對角線AC,且平面截得正方體的六個(gè)表面得到截面六邊形,記此截面六邊形的面積為S,周長為l,則( )
A. S為定值,l不為定值 B. S不為定值,l為定值
C. S與l均為定值 D. S與l均不為定值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com