相關(guān)習(xí)題
 0  263735  263743  263749  263753  263759  263761  263765  263771  263773  263779  263785  263789  263791  263795  263801  263803  263809  263813  263815  263819  263821  263825  263827  263829  263830  263831  263833  263834  263835  263837  263839  263843  263845  263849  263851  263855  263861  263863  263869  263873  263875  263879  263885  263891  263893  263899  263903  263905  263911  263915  263921  263929  266669 

科目: 來源: 題型:

【題目】筒車是我國古代發(fā)明的一種水利灌溉工具,明朝科學(xué)家徐光啟在《農(nóng)政全書》中用圖畫描繪了筒車的工作原理(如圖1).因其經(jīng)濟(jì)又環(huán)保,至今還在農(nóng)業(yè)生產(chǎn)中得到使用(如圖2).假定在水流量穩(wěn)定的情況下,筒車上的每一個(gè)盛水筒都做勻速圓周運(yùn)動(dòng).因筒車上盛水筒的運(yùn)動(dòng)具有周期性,可以考慮利用三角函數(shù)模型刻畫盛水筒(視為質(zhì)點(diǎn))的運(yùn)動(dòng)規(guī)律.將筒車抽象為一個(gè)幾何圖形,建立直角坐標(biāo)系(如圖3).設(shè)經(jīng)過t秒后,筒車上的某個(gè)盛水筒從點(diǎn)P0運(yùn)動(dòng)到點(diǎn)P.由筒車的工作原理可知,這個(gè)盛水筒距離水面的高度H(單位: ),由以下量所決定:筒車轉(zhuǎn)輪的中心O到水面的距離h,筒車的半徑r,筒車轉(zhuǎn)動(dòng)的角速度ω(單位: ),盛水筒的初始位置P0以及所經(jīng)過的時(shí)間t(單位: ).已知r=3h=2,筒車每分鐘轉(zhuǎn)動(dòng)(按逆時(shí)針方向)1.5圈, 點(diǎn)P0距離水面的高度為3.5,若盛水筒M從點(diǎn)P0開始計(jì)算時(shí)間,則至少需要經(jīng)過_______就可到達(dá)最高點(diǎn);若將點(diǎn)距離水面的高度表示為時(shí)間的函數(shù),則此函數(shù)表達(dá)式為_________

1 2 3

查看答案和解析>>

科目: 來源: 題型:

【題目】已知圓的圓心為為圓上任意一點(diǎn),,線段的垂直平分線交于點(diǎn).

1)求點(diǎn)的軌跡方程;

2)記點(diǎn)的軌跡為曲線,點(diǎn),.若點(diǎn)為直線上一動(dòng)點(diǎn),且不在軸上,直線分別交曲線、兩點(diǎn),求四邊形面積的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為、,是橢圓的上頂點(diǎn),,且的面積為1.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)、是橢圓上的兩個(gè)動(dòng)點(diǎn),,求當(dāng)的面積取得最大值時(shí),直線的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知直線與拋物線有一個(gè)公共點(diǎn).

1)求拋物線方程;

2)斜率不為0的直線經(jīng)過拋物線的焦點(diǎn),交拋物線于兩點(diǎn),.拋物線上是否存在兩點(diǎn)關(guān)于直線對稱?若存在,求出的斜率的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),其中.

(1)若是函數(shù)的導(dǎo)函數(shù)的零點(diǎn),求的單調(diào)區(qū)間;

(2)若不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知2017年市居民平均家庭凈收入走勢圖(家庭凈收入=家庭總收入一家庭總支出),如圖所示,則下列說法錯(cuò)誤的是( )

A. 2017年2月份市居國民的平均家庭凈收入最低

B. 2017年4,5,6月份市居民的平均家庭凈收入比7、8、9月份的平均家庭凈收入波動(dòng)小

C. 2017年有3個(gè)月市居民的平均家庭凈收入低于4000元

D. 2017年9、10、11、12月份平均家庭凈收入持續(xù)降低

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè):實(shí)數(shù)滿足,其中;

:實(shí)數(shù)滿足.

Ⅰ)若,為真,求實(shí)數(shù)的取值范圍;

Ⅱ)若的必要不充分條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓()的左、右焦點(diǎn)分別是,點(diǎn)的上頂點(diǎn),點(diǎn)上,,且.

1)求的方程;

2)已知過原點(diǎn)的直線與橢圓交于兩點(diǎn),垂直于的直線且與橢圓交于,兩點(diǎn),若,求.

查看答案和解析>>

科目: 來源: 題型:

【題目】橢圓的左、右焦點(diǎn)分別為、,離心率為,過焦點(diǎn)且垂直于x軸的直線被橢圓C截得的線段長為1

求橢圓C的方程;

點(diǎn)為橢圓C上一動(dòng)點(diǎn),連接,,設(shè)的角平分線PM交橢圓C的長軸于點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】為了適應(yīng)新高考改革,某校組織了一次新高考質(zhì)量測評(總分100分),在成績統(tǒng)計(jì)分析中,抽取12名學(xué)生的成績以莖葉圖形式表示如圖,學(xué)校規(guī)定測試成績低于87分的為未達(dá)標(biāo),分?jǐn)?shù)不低于87分的為達(dá)標(biāo)”.

1)求這組數(shù)據(jù)的眾數(shù)和平均數(shù);

2)在這12名學(xué)生中從測試成績介于80~90之間的學(xué)生中任選2人,求至少有1達(dá)標(biāo)的概率.

查看答案和解析>>

同步練習(xí)冊答案