科目: 來源: 題型:
【題目】已知橢圓上兩個(gè)不同的點(diǎn)、關(guān)于直線對稱.
(1)若已知,為橢圓上動(dòng)點(diǎn),證明:;
(2)求實(shí)數(shù)的取值范圍;
(3)求面積的最大值(為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目: 來源: 題型:
【題目】某工廠因排污比較嚴(yán)重,決定著手整治,一個(gè)月時(shí)污染度為,整治后前四個(gè)月的污染度如下表:
月數(shù) | … | ||||
污染度 | … |
污染度為后,該工廠即停止整治,污染度又開始上升,現(xiàn)用下列三個(gè)函數(shù)模擬從整治后第一個(gè)月開始工廠的污染模式:,,,其中表示月數(shù),、、分別表示污染度.
(1)問選用哪個(gè)函數(shù)模擬比較合理,并說明理由;
(2)若以比較合理的模擬函數(shù)預(yù)測,整治后有多少個(gè)月的污染度不超過.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓()的左右兩個(gè)焦點(diǎn)分別是、,在橢圓上運(yùn)動(dòng).
(1)若對有最大值為120°,求出、的關(guān)系式;
(2)若點(diǎn)是在橢圓上位于第一象限的點(diǎn),過點(diǎn)作直線的垂線,過作直線的垂線,若直線、的交點(diǎn)在橢圓上,求點(diǎn)的坐標(biāo);
(3)若設(shè),在(2)成立的條件下,試求出、兩點(diǎn)間距離的函數(shù),并求出的值域.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,射線和均為筆直的公路,扇形區(qū)域(含邊界)是一蔬菜種植園,其中、分別在射線和上.經(jīng)測量得,扇形的圓心角(即)為、半徑為1千米.為了方便菜農(nóng)經(jīng)營,打算在扇形區(qū)域外修建一條公路,分別與射線、交于、兩點(diǎn),并要求與扇形弧相切于點(diǎn).設(shè)(單位:弧度),假設(shè)所有公路的寬度均忽略不計(jì).
(1)試將公路的長度表示為的函數(shù),并寫出的取值范圍;
(2)試確定的值,使得公路的長度最小,并求出其最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù)在上有定義,實(shí)數(shù)和滿足,若在區(qū)間上不存在最小值,則稱在上具有性質(zhì).
(1)當(dāng),且在區(qū)間上具有性質(zhì)時(shí),求常數(shù)的取值范圍;
(2)已知(),且當(dāng)時(shí),,判別在區(qū)間上是否具有性質(zhì),試說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直三棱柱的底面是等腰直角三角形,,側(cè)棱底面,且,是的中點(diǎn).
(1)求直三棱柱的全面積;
(2)求異面直線與所成角的大小(結(jié)果用反三角函數(shù)表示);
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在平面四邊形中,,現(xiàn)將沿四邊形的對角線折起,使點(diǎn)運(yùn)動(dòng)到點(diǎn),如圖2,這時(shí)平面平面.
(1)求直線與平面所成角的正切值;
(2)求二面角的正切值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)若,其中為自然對數(shù)的底數(shù),求證:函數(shù)有2個(gè)不同的零點(diǎn);
(3)若對任意的恒成立,求實(shí)數(shù)的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com