科目: 來源: 題型:
【題目】四棱錐中,底面是邊長為的菱形,,是等邊三角形,為的中點,.
(1)求證:;
(2)若在線段上,且,能否在棱上找到一點,使平面平面?若存在,求四面體的體積.
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著“互聯(lián)網+交通”模式的迅猛發(fā)展,“共享自行車”在很多城市相繼出現。某運營公司為了了解某地區(qū)用戶對其所提供的服務的滿意度,隨機調查了40個用戶,得到用戶的滿意度評分如下:
用戶編號 | 評分 | 用戶編號 | 評分 | 用戶編號 | 評分 | 用戶編號 | 評分 | |||
1 2 3 4 5 6 7 8 9 10 | 78 73 81 92 95 85 79 84 63 86 | 11 12 13 14 15 16 17 18 19 20 | 88 86 95 76 97 78 88 82 76 89 | 21 22 23 24 25 26 27 28 29 30 | 79 83 72 74 91 66 80 83 74 82 | 31 32 33 34 35 36 37 38 39 40 | 93 78 75 81 84 77 81 76 85 89 |
用系統(tǒng)抽樣法從40名用戶中抽取容量為10的樣本,且在第一分段里隨機抽到的評分數據為92.
(1)請你列出抽到的10個樣本的評分數據;
(2)計算所抽到的10個樣本的均值和方差;
(3)在(2)條件下,若用戶的滿意度評分在之間,則滿意度等級為“級”。試應用樣本估計總體的思想,根據所抽到的10個樣本,估計該地區(qū)滿意度等級為“級”的用戶所占的百分比是多少?
(參考數據:)
查看答案和解析>>
科目: 來源: 題型:
【題目】部分與整體以某種相似的方式呈現稱為分形.謝爾賓斯基三角形是一種分形,由波蘭數學家謝爾賓斯基1915年提出.具體操作是取一個實心三角形,沿三角形的三邊中點連線,將它分成4個小三角形,去掉中間的那一個小三角形后,對其余3個小三角形重復上述過程逐次得到各個圖形,如圖.
現在上述圖(3)中隨機選取一個點,則此點取自陰影部分的概率為( )
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,直線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的直角坐標方程及直線的普通方程;
(2)設直線與曲線交于,兩點(點在點左邊)與直線交于點.求和的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知原點到動直線的距離為2,點到,的距離分別與到直線的距離相等.
(1)證明為定值,并求點的軌跡方程;
(2)是否存在過點的直線,與點的軌跡交于兩點,為線段的中點,且?若存在,請求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】我國全面二孩政策已于2016年1月1日起正式實施.國家統(tǒng)計局發(fā)布的數據顯示,從2012年到2017年,中國的人口自然增長率變化始終不大,在5‰上下波動(如圖).
為了了解年齡介于24歲至50歲之間的適孕夫妻對生育二孩的態(tài)度如何,統(tǒng)計部門按年齡分為9組,每組選取150對夫妻進行調查統(tǒng)計有生育二孩意愿的夫妻數,得到下表:
年齡區(qū)間 | |||||||||
有意愿數 | 80 | 81 | 87 | 86 | 84 | 83 | 83 | 70 | 66 |
(1)設每個年齡區(qū)間的中間值為,有意愿數為,求樣本數據的線性回歸直線方程,并求該模型的相關系數(結果保留兩位小數);
(2)從,,,,這五個年齡段中各選出一對夫妻(能代表該年齡段超過半數夫妻的意愿)進一步調研,再從這5對夫妻中任選2對夫妻.求其中恰有一對不愿意生育二孩的夫妻的概率.
(參考數據和公式:,,,,,)
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標系中,以原點為極點,軸的正半軸為極軸,以相同的長度單位建立極坐標系.已知直線的極坐標方程為,曲線的極坐標方程為.
(1)設為參數,若,求直線的參數方程;
(2)已知直線與曲線交于,設,且,求實數的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com