相關(guān)習(xí)題
 0  265143  265151  265157  265161  265167  265169  265173  265179  265181  265187  265193  265197  265199  265203  265209  265211  265217  265221  265223  265227  265229  265233  265235  265237  265238  265239  265241  265242  265243  265245  265247  265251  265253  265257  265259  265263  265269  265271  265277  265281  265283  265287  265293  265299  265301  265307  265311  265313  265319  265323  265329  265337  266669 

科目: 來源: 題型:

【題目】如圖,直棱柱中,底面是菱形,,點(diǎn)FQ是棱,的中點(diǎn),,是棱,上的點(diǎn),且

1)求證:平面

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知四邊形是邊長為5的菱形,對(duì)角線(如圖1),現(xiàn)以為折痕將菱形折起,使點(diǎn)達(dá)到點(diǎn)的位置,棱,的中點(diǎn)分為,,且四面體的外接球球心落在四面體內(nèi)部(如圖2),則線段長度的取值范圍為________

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線α為參數(shù))經(jīng)過伸縮變換得到曲線,在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為.

1)求曲線的普通方程;

2)設(shè)點(diǎn)P是曲線上的動(dòng)點(diǎn),求點(diǎn)P到直線l距離d的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓E,過右焦點(diǎn)F的直線l與橢圓E交于A,B兩點(diǎn)(A,B兩點(diǎn)不在x軸上),橢圓EA,B兩點(diǎn)處的切線交于P,點(diǎn)P在定直線.

1)記點(diǎn),求過點(diǎn)與橢圓E相切的直線方程;

2)以為直徑的圓過點(diǎn)F,求面積的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

1)求的極大值點(diǎn);

2)當(dāng),時(shí),若過點(diǎn)存在3條直線與曲線相切,求t的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在等腰梯形中,,,E,F分別為,邊的中點(diǎn).現(xiàn)將沿著折疊到的位置,使得平面平面.

1)證明:平面平面

2)求二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】2020年是我國垃圾分類逐步凸顯效果關(guān)鍵的一年.在國家高度重視,重拳出擊的前提下,高強(qiáng)度、高頻率的宣傳教育能有效縮短我國生活垃圾分類走入世界前列所需的時(shí)間,打好垃圾分類這場(chǎng)持久戰(zhàn),全民戰(zhàn)”.某市做了一項(xiàng)調(diào)查,在一所城市中學(xué)和一所縣城中學(xué)隨機(jī)各抽取15名學(xué)生,對(duì)垃圾分類知識(shí)進(jìn)行問答,滿分為100分,他們所得成績?nèi)缦拢?/span>

城市中學(xué)學(xué)生成績分別為:73 71 83 86 92 70 88 93 73 97 87 88 74 86 85

縣城中學(xué)學(xué)生成績分別為:60 64 71 91 60 76 72 85 81 72 62 74 73 63 72

1)根據(jù)上述兩組數(shù)據(jù)在圖中完成兩所中學(xué)學(xué)生成績的莖葉圖,并通過莖葉圖比較兩所中學(xué)學(xué)生成績的平均分及分散程度;(不要求計(jì)算出具體值,給出結(jié)論即可)

2)從城市中學(xué)成績?cè)?/span>80分以上的學(xué)生中抽取4名,記這4名學(xué)生的成績?cè)?/span>90分以上的人數(shù)為X,求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在正方體中,PQ,M,N,H,R是各條棱的中點(diǎn).

①直線平面;②;③P,QH,R四點(diǎn)共面;④平面.其中正確的個(gè)數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線α為參數(shù))經(jīng)過伸縮變換得到曲線,在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為.

1)求曲線的普通方程;

2)設(shè)點(diǎn)P是曲線上的動(dòng)點(diǎn),求點(diǎn)P到直線l距離d的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓E,過右焦點(diǎn)F的直線l與橢圓E交于A,B兩點(diǎn)(A,B兩點(diǎn)不在x軸上),橢圓EA,B兩點(diǎn)處的切線交于P,點(diǎn)P在定直線.

1)記點(diǎn),求過點(diǎn)與橢圓E相切的直線方程;

2)以為直徑的圓過點(diǎn)F,求面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案