科目: 來源: 題型:
【題目】已知離心率為的橢圓的左頂點為,左焦點為,及點,且、、成等比數(shù)列.
(1)求橢圓的方程;
(2)斜率不為的動直線過點且與橢圓相交于、兩點,記,線段上的點滿足,試求(為坐標原點)面積的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】千百年來,我國勞動人民在生產實踐中根據(jù)云的形狀、走向、速度、厚度、顏色等的變化,總結了豐富的“看云識天氣”的經驗,并將這些經驗編成諺語,如“天上鉤鉤云,地上雨淋淋”“日落云里走,雨在半夜后”……小波同學為了驗證“日落云里走,雨在半夜后”,觀察了所在地區(qū)的天日落和夜晚天氣,得到如下列聯(lián)表:
夜晚天氣日落云里走 | 下雨 | 未下雨 |
出現(xiàn) | ||
未出現(xiàn) |
參考公式:.
臨界值表:
(1)根據(jù)上面的列聯(lián)表判斷能否有的把握認為“當晚下雨”與“‘日落云里走’出現(xiàn)”有關?
(2)小波同學為進一步認識其規(guī)律,對相關數(shù)據(jù)進行分析,現(xiàn)從上述調查的“夜晚未下雨”天氣中按分層抽樣法抽取天,再從這天中隨機抽出天進行數(shù)據(jù)分析,求抽到的這天中僅有天出現(xiàn)“日落云里走”的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=2|x+2|+|x﹣3|.
(1)求不等式f(x)≥8的解集;
(2)若a>0,b>0,且函數(shù)F(x)=f(x)﹣3a﹣2b有唯一零點x0,證明:f(x0).
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系xOy中,已知曲線C的參數(shù)方程為(t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為ρ(cosθ+sinθ)=8.
(1)求曲線C和直線l的直角坐標方程;
(2)若射線m的極坐標方程為θ(ρ≥0),設m與C相交于點M(非坐標原點),m與l相交于點N,點P(6,0),求△PMN的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)(a>0).
(1)證明:當x∈[1,+∞)時,f(x)≥1.
(2)當0<a≤1時,對于任意的x∈(0,+∞),f(x)≥m,求整數(shù)m的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓C:1(a>b>0)的右焦點為F,離心率為,且有3a2=4b2+1.
(1)求橢圓C的標準方程;
(2)過點F的直線l與橢圓C交于M,N兩點,過點M作直線x=3的垂線,垂足為點P,證明直線NP經過定點,并求出這個定點的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】在四棱錐P﹣ABCD中,底面四邊形ABCD是一個菱形,且∠ABC,AB=2,PA⊥平面ABCD.
(1)若Q是線段PC上的任意一點,證明:平面PAC⊥平面QBD.
(2)當平面PBC與平面PDC所成的銳二面角的余弦值為時,求PA的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】2020年寒假期間,某高中決定深入調查本校學生寒假期間在家學習情況,并將依據(jù)調查結果對相應學生提出針對性學習建議.現(xiàn)從本校高一、高二、高三三個年級中分別隨機選取30,45,75人,然后再從這些學生中抽取10人,進行學情調查.
(1)若采用分層抽樣抽取10人,分別求高一、高二、高三應抽取的人數(shù).
(2)若被抽取的10人中,有6人每天學時超過7小時,有4人每天學時不足4小時,現(xiàn)從這10人中,再隨機抽取4人做進一步調查.
(i)記事件A為“被抽取的4人中至多有1人學時不足4小時”,求事件A發(fā)生的概率;
(ii)用ξ表示被抽取的4人中學時不足4小時的人數(shù),求隨機變量ξ的分布列和數(shù)學期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】△ABC的內角A,B,C的對邊分別為a,b,c,且asinBbcosA+a=bcosC+ccosB.
(1)求A;
(2)若a,點D在BC上,且AD⊥AC,當△ABC的周長取得最大值時,求BD的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知F1(﹣c,0),F2(c,0)分別為雙曲線C:1(a>0,b>0)的左、右焦點,直線l:1與C交于M,N兩點,線段MN的垂直平分線與x軸交于T(﹣5c,0),則C的離心率為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com