相關(guān)習(xí)題
 0  265370  265378  265384  265388  265394  265396  265400  265406  265408  265414  265420  265424  265426  265430  265436  265438  265444  265448  265450  265454  265456  265460  265462  265464  265465  265466  265468  265469  265470  265472  265474  265478  265480  265484  265486  265490  265496  265498  265504  265508  265510  265514  265520  265526  265528  265534  265538  265540  265546  265550  265556  265564  266669 

科目: 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Snn2+pn,且a4,a7a12成等比數(shù)列.

1)求數(shù)列{an}的通項(xiàng)公式;

2)若bn,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知xy之間的幾組數(shù)據(jù)如表:

x

1

2

3

4

y

1

m

n

4

如表數(shù)據(jù)中y的平均值為2.5,若某同學(xué)對(duì)m賦了三個(gè)值分別為1.5,2,2.5,得到三條線性回歸直線方程分別為,,對(duì)應(yīng)的相關(guān)系數(shù)分別為,,,下列結(jié)論中錯(cuò)誤的是(

參考公式:線性回歸方程中,其中.相關(guān)系數(shù)

A.三條回歸直線有共同交點(diǎn)B.相關(guān)系數(shù)中,最大

C.D.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】我們打印用的A4紙的長(zhǎng)與寬的比約為,之所以是這個(gè)比值,是因?yàn)榘鸭垙垖?duì)折,得到的新紙的長(zhǎng)與寬之比仍約為,紙張的形狀不變.已知圓柱的母線長(zhǎng)小于底面圓的直徑長(zhǎng)(如圖所示),它的軸截面ABCD為一張A4紙,若點(diǎn)E為上底面圓上弧AB的中點(diǎn),則異面直線DEAB所成的角約為(

A.B.C.D.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù),.

(Ⅰ)求證:當(dāng)時(shí),

(Ⅱ)若存在,使,求的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,點(diǎn)是拋物線上位于第一象限內(nèi)一動(dòng)點(diǎn),是焦點(diǎn),圓,過(guò)點(diǎn)作圓的切線交準(zhǔn)線于兩點(diǎn).

(Ⅰ)記直線,的斜率分別為,若,求點(diǎn)的坐標(biāo);

(Ⅱ)若點(diǎn)的橫坐標(biāo),求面積的最小值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】在多面體中,正方形和矩形互相垂直,,分別是的中點(diǎn),.

(Ⅰ)求證:平面.

(Ⅱ)在邊所在的直線上存在一點(diǎn),使得平面,求的長(zhǎng);

(Ⅲ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】袋子有5個(gè)不同的小球,編號(hào)分別為1,2,3,4,5,從袋中一次取出三個(gè)球,記隨機(jī)變量是取出球的最大編號(hào)與最小編號(hào)的差,數(shù)學(xué)期望為,方差為則下列選項(xiàng)正確的是(

A.,B.,

C.,D.,

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知點(diǎn)滿足,則滿足條件的所形成的平面區(qū)域的面積為①________,的最大值為②________

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)若關(guān)于的方程有解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】自新冠肺炎疫情發(fā)生以來(lái),某社區(qū)積極防范,并利用網(wǎng)絡(luò)對(duì)本社區(qū)居民進(jìn)行新冠肺炎防御知識(shí)講座,為了解該社區(qū)居民對(duì)防御知識(shí)的掌握情況,隨機(jī)調(diào)查了該社區(qū)100人,統(tǒng)計(jì)得到如下列聯(lián)表:

1)請(qǐng)根據(jù)2x2列聯(lián)表,判斷是否有95%的把握認(rèn)為防御知識(shí)掌握情況與年齡有關(guān);

2)為了進(jìn)一步提高該社區(qū)的防御意識(shí),該社區(qū)采用分層抽樣的方法,從調(diào)查的完全掌握的居民中抽取10人,再?gòu)倪@10人中隨機(jī)選取2人作為下一次講座的講解員,設(shè)X為這2人中年齡小于或等于50歲的人數(shù),求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案