相關(guān)習(xí)題
 0  265760  265768  265774  265778  265784  265786  265790  265796  265798  265804  265810  265814  265816  265820  265826  265828  265834  265838  265840  265844  265846  265850  265852  265854  265855  265856  265858  265859  265860  265862  265864  265868  265870  265874  265876  265880  265886  265888  265894  265898  265900  265904  265910  265916  265918  265924  265928  265930  265936  265940  265946  265954  266669 

科目: 來源: 題型:

【題目】已知函數(shù).

1)求的單調(diào)區(qū)間與極值;

2)當(dāng)函數(shù)有兩個極值點(diǎn)時,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知為等邊三角形,為等腰直角三角形,.平面平面ABD,點(diǎn)E與點(diǎn)D在平面ABC的同側(cè),且,.點(diǎn)FAD中點(diǎn),連接EF.

1)求證:平面ABC;

2)求證:平面平面ABD.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性.

(2)試問是否存在,使得恒成立?若存在,求的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓Cab>0)的兩個焦點(diǎn)分別為F1F2,離心率為,過F1的直線l與橢C交于M,N兩點(diǎn),且MNF2的周長為8.

(1)求橢圓C的方程;

(2)若直線ykxb與橢圓C分別交于A,B兩點(diǎn),且OAOB,試問點(diǎn)O到直線AB的距離是否為定值,證明你的結(jié)論.

查看答案和解析>>

科目: 來源: 題型:

【題目】某公司即將推車一款新型智能手機(jī),為了更好地對產(chǎn)品進(jìn)行宣傳,需預(yù)估市民購買該款手機(jī)是否與年齡有關(guān),現(xiàn)隨機(jī)抽取了50名市民進(jìn)行購買意愿的問卷調(diào)查,若得分低于60分,說明購買意愿弱;若得分不低于60分,說明購買意愿強(qiáng),調(diào)查結(jié)果用莖葉圖表示如圖所示.

(1)根據(jù)莖葉圖中的數(shù)據(jù)完成列聯(lián)表,并判斷是否有95%的把握認(rèn)為市民是否購買該款手機(jī)與年齡有關(guān)?

(2)從購買意愿弱的市民中按年齡進(jìn)行分層抽樣,共抽取5人,從這5人中隨機(jī)抽取2人進(jìn)行采訪,求這2人都是年齡大于40歲的概率.

附: .

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

(1)求證:當(dāng)時,對任意恒成立;

(2)求函數(shù)的極值;

(3)當(dāng)時,若存在,滿足,求證:.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓E:的一個焦點(diǎn)為,長軸與短軸的比為2:1.直線與橢圓E交于PQ兩點(diǎn),其中為直線的斜率.

(1)求橢圓E的方程;

(2)若以線段PQ為直徑的圓過坐標(biāo)原點(diǎn)O,問:是否存在一個以坐標(biāo)原點(diǎn)O為圓心的定圓O,不論直線的斜率取何值,定圓O恒與直線相切?如果存在,求出圓O的方程及實(shí)數(shù)m的取值范圍;如果不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,某市三地A,B,C有直道互通.現(xiàn)甲交警沿路線AB乙交警沿路線ACB同時從A地出發(fā),勻速前往B地進(jìn)行巡邏,并在B地會合后再去執(zhí)行其他任務(wù).已知AB=10km,AC=6km,BC=8km,甲的巡邏速度為5km/h,乙的巡邏速度為10km/h.

(1)求乙到達(dá)C地這一時刻的甲乙兩交警之間的距離;

(2)已知交警的對講機(jī)的有效通話距離不大于3km,從乙到達(dá)C地這一時刻算起,求經(jīng)過多長時間,甲乙方可通過對講機(jī)取得聯(lián)系.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,,四邊形ACEF為正方形,且平面平面ACEF.

(1)證明:;

(2)求平面BEF與平面BCF所成銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案