科目: 來源: 題型:
【題目】指數(shù)是用體重公斤數(shù)除以身高米數(shù)的平方得出的數(shù)字,是國際上常用的衡量人體胖瘦程度以及是否健康的一個標(biāo)準(zhǔn).對于高中男體育特長生而言,當(dāng)BMI數(shù)值大于或等于20.5時,我們說體重較重;當(dāng)數(shù)值小于20.5時,我們說體重較輕;身高大于或等于170的我們說身高較高;身高小于170的我們說身高較矮.
(1)已知某高中共有32名男體育特長生,其身高與指數(shù)的數(shù)據(jù)如散點(diǎn)圖所示,請根據(jù)所得信息,完成下列列聯(lián)表,并判斷是否有95%的把握認(rèn)為男體育特長生的身高對指數(shù)有影響;
身高較矮 | 身高較高 | 合計 | |
體重較輕 | |||
體重較重 | |||
合計 |
(2)①從上述32名男體育特長生中隨機(jī)選取8名,其身高和體重的數(shù)據(jù)如下表所示:
編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高() | 166 | 167 | 160 | 173 | 178 | 169 | 158 | 173 |
體重() | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
根據(jù)最小二乘法的思想與公式求得線性回歸方程為.利用已經(jīng)求得的線性回歸方程,請完善下列殘差表,并求解釋變量(身高)對于預(yù)報變量(體重)變化的貢獻(xiàn)率 (保留兩位有效數(shù)字);
編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
體重() | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
殘差 | 0.1 | 0.3 | 0.9 | -1.5 | -0.5 |
②通過殘差分析,對于殘差(絕對值)最大的那組數(shù)據(jù),需要確認(rèn)在樣本點(diǎn)的采集中是否有人為的錯誤.已知通過重新采集發(fā)現(xiàn),該組數(shù)據(jù)的體重應(yīng)該為58(kg).請重新根據(jù)最小二乘法的思想與公式,求出男體育特長生的身高與體重的線性回歸方程.
(參考公式)
,,
,,
().
() | 0.10 | 0.05 | 0.01 | 0.005 |
2.706 | 3.841 | 6.635 | 7.879 |
(參考數(shù)據(jù))
,,,,,
,.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓:()的左、右焦點(diǎn)分別為、,過右焦點(diǎn)的直線:與橢圓交于,兩點(diǎn).當(dāng)時,是橢圓的下頂點(diǎn),且的周長為6.
(1)求橢圓的方程;
(2)設(shè)橢圓的右頂點(diǎn)為,直線、分別與直線交于、點(diǎn),證明:當(dāng)變化時,以線段為直徑的圓與直線相切.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的一個焦點(diǎn)為,且在橢圓E上.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)已知垂直于x軸的直線交E于A、B兩點(diǎn),垂直于y軸的直線交E于C、D兩點(diǎn),與的交點(diǎn)為P,且,間:是否存在兩定點(diǎn)M,N,使得為定值?若存在,求出M,N的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,三棱柱的底面是正三角形,底面,M為的中點(diǎn).
(1)求證:平面;
(2)若,且沿側(cè)棱展開三棱柱的側(cè)面,得到的側(cè)面展開圖的對角線長為,求作點(diǎn)在平面內(nèi)的射影H,請說明作法和理由,并求線段AH的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系xOy下,曲線C1的參數(shù)方程為( 為參數(shù)),曲線C1在變換T:的作用下變成曲線C2.
(1)求曲線C2的普通方程;
(2)若m>1,求曲線C2與曲線C3:y=m|x|-m的公共點(diǎn)的個數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知P是曲線上的點(diǎn),Q是曲線上的點(diǎn),曲線與曲線關(guān)于直線對稱,M為線段PQ的中點(diǎn),O為坐標(biāo)原點(diǎn),則的最小值為________.
查看答案和解析>>
科目: 來源: 題型:
【題目】某保險公司有一款保險產(chǎn)品的歷史收益率(收益率利潤保費(fèi)收入)的頻率分布直方圖如圖所示:
(1)試估計這款保險產(chǎn)品的收益率的平均值;
(2)設(shè)每份保單的保費(fèi)在20元的基礎(chǔ)上每增加元,對應(yīng)的銷量為(萬份).從歷史銷售記錄中抽樣得到如下5組與的對應(yīng)數(shù)據(jù):
元 | 25 | 30 | 38 | 45 | 52 |
銷量為(萬份) | 7.5 | 7.1 | 6.0 | 5.6 | 4.8 |
由上表,知與有較強(qiáng)的線性相關(guān)關(guān)系,且據(jù)此計算出的回歸方程為.
(。┣髤(shù)的值;
(ⅱ)若把回歸方程當(dāng)作與的線性關(guān)系,用(1)中求出的收益率的平均值作為此產(chǎn)品的收益率,試問每份保單的保費(fèi)定為多少元時此產(chǎn)品可獲得最大利潤,并求出最大利潤.注:保險產(chǎn)品的保費(fèi)收入每份保單的保費(fèi)銷量.
查看答案和解析>>
科目: 來源: 題型:
【題目】在中,,,AB的垂直平分線分別交AB,AC于D、E(圖一),沿DE將折起,使得平面平面BDEC(圖二).
(1)若F是AB的中點(diǎn),求證:平面ADE.
(2)P是AC上任意一點(diǎn),求證:平面平面PBE.
(3)P是AC上一點(diǎn),且平面PBE,求二面角的大。
查看答案和解析>>
科目: 來源: 題型:
【題目】甲居住在城鎮(zhèn)的處,準(zhǔn)備開車到單位處上班,若該地各路段發(fā)生堵車事件都是相互獨(dú)立的,且在同一路段發(fā)生堵車事件最多只有一次,發(fā)生堵車事件的概率如圖(例如:算作兩個路段:路段發(fā)生堵車事件的概率為,路段發(fā)生堵車事件的概率為).
(1)請你為甲選擇一條由到的最短路線
(即此人只選擇從西向東和從南向北的路線),
使得途中發(fā)生堵車事件的概率最小;
(2)設(shè)甲在路線中遇到的堵車次數(shù)為隨機(jī)變量,求的數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com