【題目】如圖,△ABC中,M是AC的中點,E、F是BC上的兩點,且BE=EF=FC.則BN:NQ:QM等于( )
A. 6:3:2 B. 2:1:1 C. 5:3:2 D. 1:1:1
【答案】C
【解析】
連結(jié)MF,如圖,先證明MF為△CEA的中位線,則AE=2MF,AE∥MF,利用NE∥MF得到 ,,即BN=NM,MF=2NF,設(shè)BN=a,NE=b,則NM=a,MF=2b,AE=4b,所以AN=3b,然后利用AN∥MF得到 ,所以NQ=a,QM=a,再計算BN:NQ:QM的值.
連結(jié)MF,如圖,
∵M是AC的中點,EF=FC,
∴MF為△CEA的中位線,
∴AE=2MF,AE∥MF,
∵NE∥MF,
∴,,
∴BN=NM,MF=2NF,
設(shè)BN=a,NE=b,則NM=a,MF=2b,AE=4b,
∴AN=3b,
∵AN∥MF,
∴,
∴NQ=a,QM=a,
∴BN:NQ:QM=a:a:a=5:3:2.
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點坐標(biāo)為Q(2,﹣1),且與y軸交于點C(0,3),與x軸交于A、B兩點(點A在點B的右側(cè)),點P是拋物線上的一動點,從點C沿拋物線向點A運(yùn)動(點P與A不重合),過點P作PD∥y軸,交AC于點 D.
(1)求該拋物線的函數(shù)關(guān)系式及A、B兩點的坐標(biāo);
(2)求點P在運(yùn)動的過程中,線段PD的最大值;
(3)若點P與點Q重合,點E在x軸上,點F在拋物線上,問是否存在以A,P,E,F(xiàn)為頂點的平行四邊形?若存在,直接寫出點F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,取一根9.5 m長的標(biāo)桿AB,在其上系一活動旗幟C,使標(biāo)桿的影子落在平地和一堤壩的左斜坡上,拉動旗幟使其影子正好落在斜坡底角頂點D處.若測得旗高BC=4.5 m,影長BD=9 m,影長DE=5 m,請計算左斜坡的坡比(假設(shè)標(biāo)桿的影子BD,DE均與壩底線DM垂直).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正六邊形ABCDEF的邊長是6+4,點O1,O2分別是△ABF,△CDE的內(nèi)心,則O1O2=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明參加某個智力競答節(jié)目,答對最后兩道單選題就順利通關(guān).第一道單選題有3個選項,第二道單選題有4個選項,這兩道題小明都不會,不過小明還有一個“求助”沒有用(使用“求助”可以讓主持人去掉其中一題的一個錯誤選項).
(1)如果小明第一題不使用“求助”,那么小明答對第一道題的概率是 .
(2)如果小明將“求助”留在第二題使用,請用樹狀圖或者列表來分析小明順利通關(guān)的概率.
(3)從概率的角度分析,你建議小明在第幾題使用“求助”.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)在某次考試中,現(xiàn)有甲、乙、丙3名同學(xué),共四科測試實際成績?nèi)缦卤恚海▎挝唬悍郑?/span>
語文 | 數(shù)學(xué) | 英語 | 科學(xué) | |
甲 | 95 | 95 | 80 | 150 |
乙 | 105 | 90 | 90 | 139 |
丙 | 100 | 100 | 85 | 139 |
若欲從中表揚(yáng)2人,請你從平均數(shù)的角度分析,那兩人將被表揚(yáng)?
(2)為了提現(xiàn)科學(xué)差異,參與測試的語文、數(shù)學(xué)、英語、科學(xué)實際成績須以2:3:2:3的比例計入折合平均數(shù),請你從折合平均數(shù)的角度分析,哪兩人將被表揚(yáng)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校研究學(xué)生的課余愛好情況,采取抽樣調(diào)查的方法,從閱讀、運(yùn)動、娛樂、上網(wǎng)等四個方面調(diào)查了若干名學(xué)生的興趣愛好,并將調(diào)查結(jié)果繪制成下面兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答下列問題:
(1)在這次調(diào)查中,一共調(diào)查了 名學(xué)生;
(2)補(bǔ)全條形統(tǒng)計圖;
(3)若該校共有1500名學(xué)生,估計愛好運(yùn)動的學(xué)生有 人;
(4)在全校同學(xué)中隨機(jī)選取一名學(xué)生參加演講比賽,用頻率估計概率,則選出的恰好是愛好閱讀的學(xué)生的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,拋物線y=ax2+bx+c與坐標(biāo)軸分別交于點A(0,6),B(6,0),C(﹣2,0),點P是線段AB上方拋物線上的一個動點.
(1)求拋物線的解析式;
(2)當(dāng)點P運(yùn)動到什么位置時,△PAB的面積有最大值?
(3)過點P作x軸的垂線,交線段AB于點D,再過點P做PE∥x軸交拋物線于點E,連結(jié)DE,請問是否存在點P使△PDE為等腰直角三角形?若存在,求出點P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com