如圖,△ABE≌△ACF.若AB=5,AE=2,BE=4,則CF的長(zhǎng)度是( )
A.2 B.5 C.4 D.3
C【考點(diǎn)】全等三角形的性質(zhì).
【分析】根據(jù)全等三角形的性質(zhì)解答即可.
【解答】解:∵△ABE≌△ACF,
∴CF=BE=4,
故選:C.
【點(diǎn)評(píng)】本題考查的是全等三角形的性質(zhì),掌握全等三角形的對(duì)應(yīng)邊相等、全等三角形的對(duì)應(yīng)角相等是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
等腰三角形的兩邊長(zhǎng)分別為5cm和10cm,則此三角形的周長(zhǎng)是( )
A.15cm B.20cm C.25cm D.20cm或25cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖(1)在△ABC中,∠ACB=90°,AC=BC,直線(xiàn)MN經(jīng)過(guò)點(diǎn)C,且AD⊥MN于點(diǎn)D,BE⊥MN于點(diǎn)E.
(1)求證:①△ADC≌△CEB;②DE=AD+BE.
(2)當(dāng)直線(xiàn)MN繞點(diǎn)C旋轉(zhuǎn)到圖(2)的位置時(shí),DE、AD、BE又怎樣的關(guān)系?并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
在一條筆直的公路上有A、B兩地,甲騎自行車(chē)從A地到B地;乙騎自行車(chē)從B地到A第,到達(dá)A地后立即按原路返回,如圖是甲、乙兩人離B地的距離y(km)與行駛時(shí)間x(h)之間的函數(shù)圖象,根據(jù)圖象解答以下問(wèn)題:
(1)A、B兩地之間的距離:__________km;
(2)甲的速度為__________km/h;乙的速度為__________km/h;
(3)點(diǎn)M的坐標(biāo)為__________;
(4)求:甲離B地的距離y(km)與行駛時(shí)間x(h)之間的函數(shù)關(guān)系式(不必寫(xiě)出自變量的取值范圍).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在△ABC中,AB=AC,BD平分∠ABC交AC于點(diǎn)D,AE∥BD交CB的延長(zhǎng)線(xiàn)于點(diǎn)E.若∠E=35°,則∠BAC的度數(shù)為…………………………………( 。
A.40° B.45° C.60° D.70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
我國(guó)漢代數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一幅“弦圖”,后人稱(chēng)其為“趙爽弦圖”(如圖(1)).圖(2)由弦圖變化得到,它是由八個(gè)全等的直角三角形拼接而成,記圖中正方形ABCD、正方形EFGH、正方形MNKT的面積分別為、、.若正方形EFGH的邊長(zhǎng)為2,則= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com