6.如圖,AD是△ABC的角平分線,DE⊥AB于E,若AB=18,AC=12,△ABC的面積等于36,則DE=$\frac{12}{5}$.

分析 根據(jù)角平分線性質(zhì)得$\frac{AC}{AB}=\frac{DC}{BD}$,則$\frac{{S}_{△ADC}}{{S}_{△ADB}}$=$\frac{2}{3}$,由△ABC的面積得出△ABD的面積,從而求出高DE的長.

解答 解:∵AD是△ABC的角平分線,
∴$\frac{AC}{AB}=\frac{DC}{BD}$,
∵AB=18,AC=12,
∴$\frac{DC}{BD}$=$\frac{12}{18}$=$\frac{2}{3}$,
∴$\frac{{S}_{△ADC}}{{S}_{△ADB}}$=$\frac{2}{3}$,
∴S△ABC=36,
∴S△ADB=$\frac{3}{5}$×36=$\frac{108}{5}$,
$\frac{1}{2}$AB•DE=$\frac{108}{5}$,
∴$\frac{1}{2}$×18×DE=$\frac{108}{5}$,
∴DE=$\frac{12}{5}$.

點(diǎn)評(píng) 本題考查了角平分線的性質(zhì),熟練掌握角平分線的性質(zhì)是做好本題的關(guān)鍵;對(duì)于三角形的面積,如果高相等,對(duì)應(yīng)底邊的比就是面積的比.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,AD是△ABC的外角∠CAE的平分線,∠B=40°,∠DAE=55°,則∠ACB的度數(shù)是( 。
A.70°B.80°C.100°D.110°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

17.若代數(shù)式-2x+3的值是5,則x的值是-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.計(jì)算化簡:
(1)|-3|+(-1)2017×(π-3)0-(-$\frac{1}{2}$)-3    
(2)($\frac{1}{4}$a2b)•(-2ab22÷(-0.5a4b5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.如圖,數(shù)軸上表示1和$\sqrt{3}$的對(duì)應(yīng)點(diǎn)分別為A,B,點(diǎn)B到點(diǎn)A的距離與點(diǎn)C到點(diǎn)O的距離相等,設(shè)點(diǎn)C表示的數(shù)為x,請(qǐng)你寫出數(shù)x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,M是Rt△ABC 的斜邊BC上一點(diǎn)(M不與B、C重合),過點(diǎn)M作直線截△ABC,所得的三角形與△ABC相似,這樣的直線共有( 。
A.0條B.2條C.3條D.無數(shù)條

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.(1)計(jì)算:(-2)2×7-(-3)×6-|-5|
(2)先化簡,再求值.$\frac{a}{2-a}$÷$\frac{1}{a-2}$-$\sqrt{(\frac{2}{a}-2)^{2}}$,其中a=$\frac{1}{3}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

15.若代數(shù)式$\frac{\sqrt{x-3}}{x-5}$有意義,則x的取值范圍為x≥3且x≠5.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

16.大樹的價(jià)值很多,可以吸收有毒氣體,防止大氣污染,增加土壤肥力,涵養(yǎng)水源,為鳥類及其他動(dòng)物提供繁衍場所等價(jià)值,累計(jì)計(jì)算,一棵50年樹齡的大樹總計(jì)創(chuàng)造價(jià)值超過160萬元,其中160萬元用科學(xué)記數(shù)法表示為(  )
A.1.6×105B.1.6×106C.1.6×107D.1.6×108

查看答案和解析>>

同步練習(xí)冊(cè)答案