(1)如圖1,點B,D在射線AM上,點C,E在射線AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度數(shù);
(2)如圖2,點B、F、D在射線AM上,點G、C、E在射線AN上,且AB=BC=CD=DE=EF=FG=GA,求∠A的度數(shù).
(1)21°(2)∠A=
【解析】
試題分析:(1)根據(jù)等邊對等角可得∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和可得∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,然后用∠A表示出∠EDM,計算即可求解;
(2)由特殊到一般,解題的思路與(1)相同.
【解析】
(1)∵AB=BC=CD=DE,
∴∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,
根據(jù)三角形的外角性質(zhì),
∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,
又∵∠EDM=84°,
∴∠A+3∠A=84°,
解得,∠A=21°;
(2)∵AB=BC=CD=DE=EF=FG=GA,設(shè)∠A=x°,
則∠AFG=∠ACB=x°,∠CGF=∠CEF=∠CBF=∠CDF=2x°,
∠ECD=∠CED=∠EFD=∠EDF=3x°,
而∠A+∠CED+∠EDF=180°,故,即∠A=;
科目:初中數(shù)學 來源:2015年課時同步練習(浙教版)八年級上2.7探索勾股定理(解析版) 題型:選擇題
已知一直角三角形三邊的長分別為x,3,4,則x的值為( )
A.5 B. C.5或 D.
查看答案和解析>>
科目:初中數(shù)學 來源:2015年課時同步練習(浙教版)八年級上2.4等腰三角形的判定定理1(解析版) 題型:?????
推理:如圖,∵∠A=∠ACD,∠B=∠BCD,(已知)∴AD=CD,CD=DB( 等腰三角形的性質(zhì))∴AD=DB,依據(jù)是( )
A.旋轉(zhuǎn)不改變圖形的大小 B.連接兩點的所有線中線段最短
C.等量代換 D.整體大于部分
查看答案和解析>>
科目:初中數(shù)學 來源:2015年課時同步練習(浙教版)八年級上2.4等腰三角形的判定定理1(解析版) 題型:?????
如圖,已知直線PQ⊥MN于點O,點A,B分別在MN,PQ上,OA=1,OB=2,在直線MN或直線PQ上找一點C,使△ABC是等腰三角形,則這樣的C點有( )
A.3個 B.4個 C.7個 D.8個
查看答案和解析>>
科目:初中數(shù)學 來源:2015年課時同步練習(浙教版)八年級上2.4等腰三角形的判定定理1(解析版) 題型:?????
在△ABC中,D為BC中點,且AD⊥BC,那么下列結(jié)論中不正確的是( )
A.△ABD≌△ACD B.AB=AC C.∠BAD=∠CAD D.AC=BD
查看答案和解析>>
科目:初中數(shù)學 來源:2015年課時同步練習(浙教版)八年級上2.2等腰三角形2(解析版) 題型:解答題
如圖,AD是△ABC的角平分線,DE⊥AB,DF⊥AC,垂足分別是點E,F(xiàn),連接EF,交AD于點G,求證:AD⊥EF.
查看答案和解析>>
科目:初中數(shù)學 來源:2015年課時同步練習(浙教版)八年級上2.2等腰三角形2(解析版) 題型:填空題
已知等腰三角形一腰上的中線將它周長分成18cm和12cm兩部分,則這個等腰三角形的底邊長是 .
查看答案和解析>>
科目:初中數(shù)學 來源:2015年課時同步練習(浙教版)八年級上2.2等腰三角形1(解析版) 題型:?????
如果等腰三角形的一個底角為α,那么( )
A.α不大于45° B.0°<α<90° C.α不大于90° D.45°<α<90°
查看答案和解析>>
科目:初中數(shù)學 來源:2015年課時同步練習(浙教版)八年級上2.1圖形的軸對稱(解析版) 題型:填空題
同學們都喜歡老師給他的作業(yè)打“紅勾”,我們將一張長10cm,寬1cm的矩形紅紙條(如左圖)進行翻折,便可得到一個漂亮的“紅勾”(如右圖).如果“紅勾”所成的銳角為60°,則這個“紅勾”的面積為 cm2(結(jié)果保留根號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com