如圖,在等邊△ABC中,AB=6,D是BC的中點(diǎn),將△ABD繞點(diǎn)A旋轉(zhuǎn)后得到△ACE,那么線段DE的長(zhǎng)度為 .
3 .
【考點(diǎn)】旋轉(zhuǎn)的性質(zhì);等邊三角形的判定與性質(zhì).
【專題】幾何圖形問(wèn)題.
【分析】首先,利用等邊三角形的性質(zhì)求得AD=3;然后根據(jù)旋轉(zhuǎn)的性質(zhì)、等邊三角形的性質(zhì)推知△ADE為等邊三角形,則DE=AD.
【解答】解:如圖,∵在等邊△ABC中,∠B=60°,AB=6,D是BC的中點(diǎn),
∴AD⊥BD,∠BAD=∠CAD=30°,
∴AD=ABcos30°=6×=3.
根據(jù)旋轉(zhuǎn)的性質(zhì)知,∠EAC=∠DAB=30°,AD=AE,
∴∠DAE=∠EAC+∠CAD=60°,
∴△ADE的等邊三角形,
∴DE=AD=3,
即線段DE的長(zhǎng)度為3.
故答案為:3.
【點(diǎn)評(píng)】本題考查了旋轉(zhuǎn)的性質(zhì)、等邊三角形的性質(zhì).旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后的兩個(gè)圖形全等,對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
若x=0是關(guān)于x的一元二次方程(m﹣2)x2+3x+m2+2m﹣8=0的一個(gè)解,求實(shí)數(shù)m的值和另一個(gè)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
矩形的面積一定,則它的長(zhǎng)和寬的關(guān)系是( )
A.正比例函數(shù) B.一次函數(shù) C.反比例函數(shù) D.二次函數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知扇形的圓心角為45°,半徑長(zhǎng)為12,用它圍成一個(gè)圓錐的側(cè)面,那么圓錐的底面半徑為( 。
A.3 B.1.5 C.2 D.2.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
在美化校園的活動(dòng)中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長(zhǎng)),用28m長(zhǎng)的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB=xm.
(1)若花園的面積為192m2,求x的值;
(2)若在P處有一棵樹(shù)與墻CD,AD的距離分別是15m和6m,要將這棵樹(shù)圍在花園內(nèi)(含邊界,不考慮樹(shù)的粗細(xì)),求花園面積S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如果將拋物線y=x2+2向下平移1個(gè)單位,那么所得新拋物線的表達(dá)式是( 。
A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=x2+1 D.y=x2+3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
為了響應(yīng)政府提出的由中國(guó)制造向中國(guó)創(chuàng)造轉(zhuǎn)型的號(hào)召,某公司自主設(shè)計(jì)了一款成本為40元的可控溫杯,并投放市場(chǎng)進(jìn)行試銷(xiāo)售,經(jīng)過(guò)調(diào)查發(fā)現(xiàn)該產(chǎn)品每天的銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)滿足一次函數(shù)關(guān)系:y=﹣10x+1200.
(1)求出利潤(rùn)S(元)與銷(xiāo)售單價(jià)x(元)之間的關(guān)系式(利潤(rùn)=銷(xiāo)售額﹣成本);
(2)當(dāng)銷(xiāo)售單價(jià)定為多少時(shí),該公司每天獲取的利潤(rùn)最大?最大利潤(rùn)是多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com