【題目】-2≤x≤1時,二次函數(shù)y=-(x-m)2+m2+1有最大值4,則實數(shù)m的值為( 。

A. B. C. D.

【答案】B

【解析】

先求出二次函數(shù)對稱軸為直線x=m;再分m<-2,-2≤m≤1,m>1三種情況,根據(jù)二次函數(shù)的增減性列方程求解即可.

二次函數(shù)的對稱軸為直線x=m,

m<-2時,x=-2時二次函數(shù)有最大值,

此時-(-2-m)2+m2+1=4.

解得m=-,與m<-2矛盾,故m值不存在;

②當-2≤m≤1時,x=m時,二次函數(shù)有最大值,

此時,m2+1=4.

解得m=-,m=(舍去);

③當m>1時,x=1時二次函數(shù)有最大值,

此時,-(1-m)2+m2+1=4.

解得m=2.

綜上所述,m的值為2-.

答案選B.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】九年級三班學生蘇琪為幫助同桌萬宇鞏固平面直角坐標系四個象限內(nèi)及坐標軸上的點的坐標特點這一基礎(chǔ)知識,在三張完全相同且不透明的卡片正面分別寫上了﹣3,0,2三個數(shù)字,背面向上洗勻后隨機抽取一張,將卡片上的數(shù)字記為a,再從剩下的兩張中隨機取出一張,將卡片上的數(shù)字記為b,然后叫萬宇在平面直角坐標系中找出點Mab)的位置.

1)請你用樹狀圖幫萬宇同學進行分析,并寫出點M所有可能的坐標;

2)求點M在第二象限的概率;

3)張老師在萬宇同學所畫的平面直角坐標系中,畫了一個半徑為3⊙O,過點M能作多少條⊙O的切線?請直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,工人師傅常用卡鉗這種工具測定工件內(nèi)槽的寬.卡鉗由兩根鋼條AA、BB組成,OAA、BB的中點.只要量出AB的長度,由三角形全等就可以知道工件內(nèi)槽AB的長度.則判定OAB≌△OAB的依據(jù)是(

A. SASB. ASAC. SSSD. AAS

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象交于A,B兩點,且點A的橫坐標和點B的縱坐標都是﹣2,

求:(1)一次函數(shù)的解析式;

(2)△AOB的面積;

(3)直接寫出一次函數(shù)的函數(shù)值大于反比例函數(shù)的函數(shù)值時x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABAD,CBCD,BDAC交于點O,下列結(jié)論錯誤的是( 。

A.AC垂直平分BDB.圖中共有三對全等三角形

C.OCD=∠ODCD.四邊形ABCD的面積等于ACBD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列各式及其展開式

a+b2a2+2ab+b2

a+b3a3+3a2b+3ab2+b3

a+b4a4+4a3b+6a2b2+4ab3+b4

根據(jù)下圖,猜想:

a+b5_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中, ,,的中垂線,的中垂線,已知的長為,則陰影部分的面積為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學著作《九章算術(shù)》中有這樣一個問題:今有池方一丈,葭生其中央,出水一尺.引葭赴岸,適于岸齊,問水深、葭長各幾何?這道題的意思是說:有一個邊長為10尺的正方形水池,在水池的正中央長著一根蘆葦,蘆葦露出水面1尺,若將蘆葦拉到水池一邊的中點處,蘆葦?shù)捻敹饲『玫竭_池邊的水面,問水的深度與這根蘆葦?shù)拈L度分別是多少?若設(shè)水的深度為x尺,則可以得到方程_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個交點是點A(3,0),其部分圖象如圖,則下列結(jié)論:

2a+b=0;

b2﹣4ac<0;

③一元二次方程ax2+bx+c=0(a≠0)的另一個解是x=﹣1;

④點(x1,y1),(x2,y2)在拋物線上,若x1<0<x2,則y1<y2

其中正確的結(jié)論是_____(把所有正確結(jié)論的序號都填在橫線上)

查看答案和解析>>

同步練習冊答案