【題目】數(shù)軸上有兩點(diǎn)A,B, 點(diǎn)C,D分別從原點(diǎn)O與點(diǎn)B出發(fā),沿BA方向同時(shí)向左運(yùn)動(dòng).
(1)如圖,若點(diǎn)N為線段OB上一點(diǎn),AB=16,ON=2,當(dāng)點(diǎn)C,D分別運(yùn)動(dòng)到AO,BN的中點(diǎn)時(shí),求CD的長(zhǎng);
(2)若點(diǎn)C在線段OA上運(yùn)動(dòng),點(diǎn)D在線段OB上運(yùn)動(dòng),速度分別為每秒1cm, 4cm,在點(diǎn)C,D運(yùn)動(dòng)的過(guò)程中,滿足OD=4AC,若點(diǎn)M為直線AB上一點(diǎn),且AM-BM=OM,求的值.
【答案】(1)9;(2)或1.
【解析】
(1)根據(jù)C,D分別為AO,BN的中點(diǎn),可得ND=BN,CO=AO,再根據(jù)CD=CO+ON+DN,將ND,CO代入可得出結(jié)果;
(2)根據(jù)OD=4AC,BD=4CO,可得出OA:OB=1:4. 由點(diǎn)M為直線AB上一點(diǎn),且AM-BM=OM,分兩種情況求解:①當(dāng)點(diǎn)M在線段AB上,先由已知等量關(guān)系得出AO=BM,設(shè)AO=x,再用x表示出AB,OM即可得出結(jié)果;②當(dāng)點(diǎn)M在B點(diǎn)右側(cè)時(shí),由. AM-BM=AB=OM可得出結(jié)果.
解:(1)當(dāng)點(diǎn)C,D分別運(yùn)動(dòng)到AO,BN的中點(diǎn)時(shí),得
ND=BN,CO=AO,
∴CD=CO+ON+DN=AO+ON+BN=(AO+BN)+ON=(AB-ON)+ON,
又AB=16,ON=2,
∴CD=×(16-2)+2=9.
(2)∵C,D兩點(diǎn)運(yùn)動(dòng)的速度比為1:4,∴BD=4CO.
又OD=4AC,∴BD+OD=4(CO+AC),
∴OB=4OA,即OA:OB=1:4.
若點(diǎn)M為直線AB上一點(diǎn),且AM-BM=OM,
①點(diǎn)M在線段AB上時(shí),如圖,
∵AM-BM=OM,∴AO+OM-BM=OM,
∴AO=BM,
設(shè)AO=x,則BM=x,
由OA:OB=1:4,得BO=4x,AB=5x
∴OM=BO-BM=3x,
∴.
②當(dāng)點(diǎn)M在B點(diǎn)右側(cè)時(shí),如圖,
∵AM-BM=OM,
∴AB=OM,
∴
綜上所述:的值為或1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在數(shù)學(xué)活動(dòng)課上,將邊長(zhǎng)為和3的兩個(gè)正方形放置在直線l上,如圖a,他連接AD、CF,經(jīng)測(cè)量發(fā)現(xiàn)AD=CF.
(1)他將正方形ODEF繞O點(diǎn)逆時(shí)針針旋轉(zhuǎn)一定的角度,如圖b,試判斷AD與CF還相等嗎?說(shuō)明理由.
(2)他將正方形ODEF繞O點(diǎn)逆時(shí)針旋轉(zhuǎn),使點(diǎn)E旋轉(zhuǎn)至直線l上,如圖c,請(qǐng)求出CF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四邊形ABCD為正方形,E是BC的中點(diǎn),連接AE,過(guò)點(diǎn)A作∠AFD,使∠AFD=2∠EAB,AF交CD于點(diǎn)F,如圖①,易證:AF=CD+CF.
(1)如圖②,當(dāng)四邊形ABCD為矩形時(shí),其他條件不變,線段AF,CD,CF之間有怎樣的數(shù)量關(guān)系?請(qǐng)寫出你的猜想,并給予證明;
(2)如圖③,當(dāng)四邊形ABCD為平行四邊形時(shí),其他條件不變,線段AF,CD,CF之間又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的猜想.
圖① 圖② 圖③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“4000輛自行車、187個(gè)服務(wù)網(wǎng)點(diǎn)”,某市區(qū)現(xiàn)已實(shí)現(xiàn)公共自行車服務(wù)全覆蓋,為人們的生活帶來(lái)了方便。圖①是公共自行車的實(shí)物圖,圖②是公共自行車的車架示意圖,點(diǎn)A,D,C,E在同一條直線上,CD=30 cm,DF=20 cm,AF=25 cm,F(xiàn)D⊥AE于點(diǎn)D,座桿CE=15 cm,且∠EAB=75°.
(1)求AD的長(zhǎng);
(2)求點(diǎn)E到AB的距離.(參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知反比例函數(shù)與正比例函數(shù)的圖象,點(diǎn),點(diǎn)與點(diǎn)均在反比例函數(shù)的圖象上,點(diǎn)在直線上,四邊形是平行四邊形,則點(diǎn)的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=6,過(guò)點(diǎn)C的直線MN∥AB,D為AB上一點(diǎn),過(guò)點(diǎn)D作DE⊥BC,交直線MN于點(diǎn)E,垂足為F,連接CD,BE.
(1)當(dāng)點(diǎn)D是AB的中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說(shuō)明你的理由;
(2)在(1)的條件下,當(dāng)∠A等于多少度時(shí),四邊形BECD是正方形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一名考生步行前往考場(chǎng),5分鐘走了總路程的,估計(jì)步行不能準(zhǔn)時(shí)到達(dá),于是他改乘出租車趕往考場(chǎng),他的行程與時(shí)間關(guān)系如圖所示(假定總路程為1,出租車勻速),則他到達(dá)考場(chǎng)所花的時(shí)間比一直步行提前了________分鐘。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在矩形ABCD中,AB=30cm,BC=60cm.點(diǎn)P從點(diǎn)A出發(fā),沿A→B→C→D路線向點(diǎn)D勻速運(yùn)動(dòng),到達(dá)點(diǎn)D后停止;點(diǎn)Q從點(diǎn)D出發(fā),沿D→C→B→A路線向點(diǎn)A勻速運(yùn)動(dòng),到達(dá)點(diǎn)A后停止。若點(diǎn)P、Q同時(shí)出發(fā),在運(yùn)動(dòng)過(guò)程中,Q點(diǎn)停留了1s,圖②是P、Q兩點(diǎn)在折線AB→BC→CD上相距的路程S(cm)與時(shí)間t(s)之間的函數(shù)關(guān)系圖象。
(1)請(qǐng)解釋圖中點(diǎn)H的實(shí)際意義?
(2)求P、Q兩點(diǎn)的運(yùn)動(dòng)速度;
(3)當(dāng)時(shí)間t為何值時(shí),△PCQ為等腰三角形?請(qǐng)直接寫出t的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△AOB中,AB⊥OB,且AB=OB=3,設(shè)直線截此三角形所得陰影部分的面積為S,則S與t之間的函數(shù)關(guān)系的圖象為下列選項(xiàng)中的( 。
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com