科目: 來源:2012-2013學(xué)年北京市門頭溝區(qū)九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,已知每個小方格都是邊長為1的正方形,我們稱每個小正方形的頂點為格點,以格點為頂點的圖形稱為格點圖形. 圖中的△ABC是一個格點三角形.
(1)請你在圖中畫出格點△A1BC1, 使得△A1BC1∽△ABC,且△A1BC1與△ABC的相似比為2:1;
(2)寫出A1、C1兩點的坐標.
查看答案和解析>>
科目: 來源:2012-2013學(xué)年北京市門頭溝區(qū)九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
已知拋物線.
(1) 求證:無論為任何實數(shù),拋物線與軸總有兩個交點;
(2) 若A、B是拋物線上的兩個不同點,求拋物線的解析式和的值;
(3) 若反比例函數(shù)的圖象與(2)中的拋物線在第一象限內(nèi)的交點的橫坐標為,且滿足2<<3,求k的取值范圍.
查看答案和解析>>
科目: 來源:2012-2013學(xué)年北京市門頭溝區(qū)九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,在平面直角坐標系xOy中,已知點B的坐標為(2,0),點C的坐標為(0,8),sin∠CAB=, E是線段AB上的一個動點(與點A、點B不重合),過點E作EF∥AC交BC于點F,連結(jié)CE.
(1)求AC和OA的長;
(2)設(shè)AE的長為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式;
(3)在(2)的條件下試說明S是否存在最大值,若存在,請求出S的最大值,并求出此時點E的坐標,判斷此時△BCE的形狀;若不存在,請說明理由.
查看答案和解析>>
科目: 來源:2012-2013學(xué)年北京市門頭溝區(qū)九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
在平面直角坐標系xOy中,已知拋物線 經(jīng)過(2,1)和(6,-5)兩點.
(1)求拋物線的解析式;
(2)設(shè)此拋物線與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于C點,點P是在直線右側(cè)的此拋物線上一點,過點P作PM軸,垂足為M. 若以A、P、M為頂點的三角形與△OCB相似,求點P的坐標;
(3)點E是直線BC上的一點,點F是平面內(nèi)的一點,若要使以點O、B、E、F為頂點的四邊形是菱形,請直接寫出點F的坐標.
查看答案和解析>>
科目: 來源:2012-2013學(xué)年北京市順義區(qū)九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題
如圖,△中,∥,,,則的長是( )
A. B. C. D.
查看答案和解析>>
科目: 來源:2012-2013學(xué)年北京市順義區(qū)九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題
若兩個相似三角形的周長之比為1∶4,則它們的面積之比為( )
A.1∶2 B.1∶4 C.1∶8 D.1∶16
查看答案和解析>>
科目: 來源:2012-2013學(xué)年北京市順義區(qū)九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題
反比例函數(shù)的圖象,當時,隨的增大而減小,則的取值范圍是( 。
A. B. C. D.
查看答案和解析>>
科目: 來源:2012-2013學(xué)年北京市順義區(qū)九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題
在平面直角坐標系中,將拋物線 先向左平移1個單位長度,再向下平移3個單位長度后所得到的拋物線的解析式為 ( )
A. B.
C. D.
查看答案和解析>>
科目: 來源:2012-2013學(xué)年北京市順義區(qū)九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題
如圖,是的直徑,為弦,于,則下列結(jié)論中不成立的是 ( )
A. B.
C. D.
查看答案和解析>>
科目: 來源:2012-2013學(xué)年北京市順義區(qū)九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題
如圖,、是的切線,切點分別為、,為上一點,若, 則( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com