科目: 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=90°,D為平面內(nèi)的一點(diǎn).
(1)如圖1,當(dāng)點(diǎn)D在邊BC上時(shí),且∠BAD=30°,求證:AD=BD.
(2)如圖2,當(dāng)點(diǎn)D在△ABC的外部,且滿足∠BDC﹣∠ADC=45°,求證:BD=AD.
(3)如圖3,若AB=4,當(dāng)D、E分別為AB、AC的中點(diǎn),把△DAE繞A點(diǎn)順時(shí)針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α(0<α≤180°),直線BD與CE的交點(diǎn)為P,連接PA,直接寫出△PAC面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,ABCD是一塊邊長(zhǎng)為8米的正方形苗圃,園林部門擬將其改造為矩形AEFG的形狀,其中點(diǎn)E在AB邊上,點(diǎn)G在A的延長(zhǎng)線上,DG=2BE,設(shè)BE的長(zhǎng)為x米,改造后苗圃AEFG的面積為y平方米.
(1)求y與x之間的函數(shù)關(guān)系式(不需寫自變量的取值范圍);
(2)若改造后的矩形苗圃AEFG的面積與原正方形苗圃ABCD的面積相等,此時(shí)BE的長(zhǎng)為 米.
(3)當(dāng)x為何值時(shí)改造后的矩形苗圃AEFG的最大面積?并求出最大面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在邊長(zhǎng)為5的正方形中,以B為圓心,BA為半徑作弧AC,F為弧AC上一動(dòng)點(diǎn),過點(diǎn)F作⊙B的切線交AD于點(diǎn)P,交DC于點(diǎn)Q.
(1)求證:PQ=AP+CQ;
(2)分別延長(zhǎng)PQ、BC,延長(zhǎng)線相交于點(diǎn)M,如果AP=2,求BM的長(zhǎng).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系內(nèi)有A(﹣1,2)、B(﹣3,1)、C(0,﹣1).
(1)畫出△ABC關(guān)于O點(diǎn)成中心對(duì)稱的△A1B1C1,直接寫出B1:( , )
(2)將△ABC繞O點(diǎn)順時(shí)針方向旋轉(zhuǎn)90°后得到△A2B2C2,畫出旋轉(zhuǎn)后的圖形并直接寫出B2坐標(biāo):( , )
(3)求(2)中線段AB所掃過的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】袋中裝有2個(gè)紅球和2個(gè)綠球.
(1)先從袋中摸出1個(gè)球后放回,混合均勻后再摸出1個(gè)球,求兩次摸到的球中有1個(gè)綠球和1個(gè)紅球的概率;
(2)先從袋中摸出1個(gè)球后不放回,再摸出個(gè)球,則兩次摸到的球中有1個(gè)綠球和1個(gè)紅球的概率是 .(直接填答案)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點(diǎn)A,B的坐標(biāo)分別為(1,0),(2,0).若二次函數(shù)y=x2+(a﹣3)x+3的圖象與線段AB只有一個(gè)交點(diǎn),則a的取值范圍是_______________________.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在等邊△ABC中,AB=4,D、E分別為射線CB、AC上的兩動(dòng)點(diǎn),且BD=CE,直線AD和BE相交于M點(diǎn),則CM的最大值為( 。
A.2B.C.3D.4
查看答案和解析>>
科目: 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+x+4圖象與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.
(1)如圖1,點(diǎn)P是直線BC上方的拋物線上一動(dòng)點(diǎn),過點(diǎn)P作PD⊥x軸交BC于點(diǎn)E,交x軸于點(diǎn)D.點(diǎn)M為線段OC上一動(dòng)點(diǎn),過點(diǎn)M作MN∥x軸交拋物線的對(duì)稱軸于點(diǎn)N,當(dāng)四邊形BOCP面積最大時(shí),求EN+MN+CM的最小值.
(2)在(1)的條件下,將△AMN在直線CN上平移,點(diǎn)M的對(duì)應(yīng)點(diǎn)為點(diǎn)M',是否存在點(diǎn)M'使得△MOM'成為等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)M'的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點(diǎn)H,E在BC邊上,點(diǎn)G,F在CD邊上,連接AF,AG,AE,HF,AG垂直平分CF,HF分別交AE,AG于點(diǎn)M,N,∠AEB=45°,∠FHC=∠GAE.
(1)若AF=,tan∠FAG=,求AN;
(2)若∠FHC=2∠FAG,求證:AE=MN+BE.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com