【題目】已知橢圓與直線y=x-2相切,設(shè)橢圓的上頂點為M, 是橢圓的左右焦點,且M為等腰直角三角形。(1)求橢圓的標(biāo)準(zhǔn)方程;(2)直線l過點N0,-)交橢圓于AB兩點,直線MAMB分別與橢圓的短軸為直徑的圓交于S,T兩點,求證:O、S、T三點共線。

【答案】(1);(2)見解析

【解析】試題分析:

1)由為等腰直角三角形可得,再由直線和橢圓相切并根據(jù)判別式可得,于是可得橢圓的方程.(2由題意要證OS、T三點共線,只需證明ST為圓的直徑即可,根據(jù)題意只需證明,通過計算得到即可

試題解析

1)解:為等腰直角三角形,

橢圓的方程為

消去x整理得 ,

橢圓與直線相切,

解得

橢圓的標(biāo)準(zhǔn)方程為,

2)證明:由題意得直線AB的斜率存在,設(shè)直線的方程,

消去y整理得,

∵直線AB與橢圓交于兩點,

設(shè)點,

,

,

又圓的直徑為橢圓的短軸,故圓心為原點,

三點共線.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中,EF、G、H分別是棱、、的中點.

1)判斷直線的位置關(guān)系,并說明理由;

2)求異面直線所成的角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且函數(shù)是偶函數(shù),設(shè)

(1)求的解析式;

(2)若不等式≥0在區(qū)間(1,e2]上恒成立,求實數(shù)的取值范圍;

(3)若方程有三個不同的實數(shù)根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某次學(xué)科測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如圖.

則參加測試的總?cè)藬?shù)為______,分數(shù)在之間的人數(shù)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了全面貫徹黨的教育方針,堅持以人文本、德育為先,全面推進素質(zhì)教育,讓學(xué)生接觸自然,了解社會,拓寬視野,豐富知識,提高社會實踐能力和綜合素質(zhì),減輕學(xué)生過重負擔(dān),培養(yǎng)學(xué)生興趣愛好,豐富學(xué)生的課余生活,使廣大學(xué)生在社會實踐中,提高創(chuàng)新精神和實踐能力,樹立學(xué)生社會責(zé)任感,因此學(xué)校鼓勵學(xué)生利用課余時間參加社會活動實踐。寒假歸來,某校高三(2)班班主任收集了所有學(xué)生參加社會活動信息,整理出如圖所示的圖。

1)求高三(2)班同學(xué)人均參加社會活動的次數(shù);

2)求班上的小明同學(xué)僅參加1次社會活動的概率;

3)用分層抽樣的方法從班上參加活動2次及以上

的同學(xué)中抽取一個容量為5的樣本,從這5人中任選3人,其中僅有兩人參加2次活動的概率。.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,則不等式fx-2+fx2-4)<0的解集為( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱柱,三個側(cè)面均為矩形,底面為等腰直角三角形, ,為棱的中點,在棱上運動.

1)求證

2)當(dāng)點運動到某一位置時,恰好使二面角的平面角的余弦值為,求點到平面的距離;

3)在(2)的條件下,試確定線段上是否存在一點,使得平面?若存在,確定其位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的兩個焦點分別為F1-1,0)、F21,0),短軸的兩個端點分別為B1,B2

1)若△F1B1B2為等邊三角形,求橢圓C的方程;

2)若橢圓C的短軸長為2,過點F2的直線l與橢圓C相交于P,Q兩點,且,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),函數(shù).

Ⅰ)若函數(shù)處的切線與直線平行,的值;

Ⅱ)若對于定義域內(nèi)的任意,總存在使得,的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案