已知實數(shù)x,y滿足不等式組
x+y-2≥0
x+2y-4≤0
x-y-1≤0
,那么式子z=3x+y的最大值是(  )
A、6B、7C、8D、9
考點:簡單線性規(guī)劃
專題:計算題,作圖題,不等式的解法及應(yīng)用
分析:由題意作出其平面區(qū)域,將z=3x+y化為y=-3x+z,z相當(dāng)于直線y=-3x+z的縱截距,由幾何意義可得.
解答: 解:由題意作出其平面區(qū)域,

將z=3x+y化為y=-3x+z,
z相當(dāng)于直線y=-3x+z的縱截距,
則當(dāng)過點A時有最大值,
由y=x-1與2y+x=4解得,A(2,1),
則z=6+1=7,
故選B.
點評:本題考查了簡單線性規(guī)劃,作圖要細(xì)致認(rèn)真,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=lg(2x-x2)的值域是
 
,單調(diào)增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一次研究性學(xué)習(xí)中,老師給出函數(shù)f(x)=
x
1+|x|
(x∈R),四個小組的同學(xué)在研究此函數(shù)時,討論交流后分別得到一下四個命題:
①函數(shù)f(x)的值域是(-1,1);
②若x1≠x2,則一定有f(x1)≠f(x2);
③若規(guī)定f1(x)=f(x),fn(x)=f(fn-1(x)),則fn(x)=
x
1+n|x|
對任意的n∈N*恒成立;
④若實數(shù)a,b滿足f(a-1)+f(b)=0,則a+b等于1.
你認(rèn)為上述四個命題中正確的序號有
 
.(填寫出正確的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=[2log4(2x)-(2a+1)]•log2x+3,x∈[
32
,8]
(1)若f(x)的最小值記為h(a),求h(a)的解析式;
(2)是否存在實數(shù)m,n同時滿足以下條件:
①log3m>log3n>1;
②當(dāng)h(a)的定義域為[n,m]時,值域為[n2,m2].若存在,求出m,n的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=4x-
1
x+2

(1)用定義證明f(x)在(-2,+∞)上是增函數(shù);
(2)求f(x)的零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=k(x-
1
x
)-lnx,k∈R.
(Ⅰ)若f(x)與x軸相切于點(1,f(1),求f(1))的解析式;
(Ⅱ)若f(x)在其定義域內(nèi)為單調(diào)函數(shù),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一張坐標(biāo)紙折疊一次,使得點(0,2)與點(4,0)重合,點(7,3)與點(m,n)重合,則m+n=( 。
A、
34
5
B、
36
5
C、
28
3
D、
32
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足(n+1)an,(n+2)an+1,n成等差數(shù)列,a1=-1,bn=(n+1)an-n+2,若log2(-bn)+3n≥k2-2k,對一切n∈N*都成立,則實數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在復(fù)平面內(nèi),復(fù)數(shù)Z=
2
3-i
+i2015對應(yīng)的點位于( 。
A、第四象限B、第三象限
C、第二象限D、第一象限

查看答案和解析>>

同步練習(xí)冊答案