【題目】“現(xiàn)代五項(xiàng)”是由現(xiàn)代奧林匹克之父顧拜旦先生創(chuàng)立的運(yùn)動(dòng)項(xiàng)目,包含射擊、擊劍、游泳、馬術(shù)和越野五項(xiàng)運(yùn)動(dòng).規(guī)定每一項(xiàng)運(yùn)動(dòng)的前三名得分都分別為,,且),每位選手各項(xiàng)得分之和為最終得分.在一次比賽中,只有甲、乙、丙三人參加“現(xiàn)代五項(xiàng)”,甲最終得22分,乙和丙最終各得9分,且乙的馬術(shù)比賽獲得了第一名.則:__________,游泳比賽的第三名是__________

【答案】 5

【解析】分析甲最終得乙和丙最值各得, ,即每個(gè)項(xiàng)目三個(gè)名次總分是,每個(gè)項(xiàng)目三個(gè)名次的分值情況只有兩種:分、、;②分、、分,在各種情況下,對(duì)甲乙丙的得分合理性一一判定即可.

詳解甲最終得,乙和丙最值各得,

,

即每個(gè)項(xiàng)目三個(gè)各次總分是,

每個(gè)項(xiàng)目三個(gè)各次的分值情況只有兩種:分、、;②分、、分,

對(duì)于情況分、分,五場(chǎng)比賽甲不可能得分,不合題意;

只能情況分、分符合題意,所以,

因?yàn)橐业鸟R術(shù)比賽獲得第一名,分,余下四個(gè)項(xiàng)目共得分,只能是四個(gè)第三名

余下四個(gè)第一名,若甲得三個(gè)第一名,分,還有兩個(gè)項(xiàng)目得分不可能,

故甲必須得四個(gè)第一名,一個(gè)第二名,

余下一個(gè)馬術(shù)第三名,四個(gè)第二名剛好符合丙得分,

由此可得游泳比賽的第三名是乙,

故答案為乙.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在本市某舊小區(qū)改造工程中,需要在地下鋪設(shè)天燃?xì)夤艿?已知小區(qū)某處三幢房屋分別位于扇形的三個(gè)頂點(diǎn)上,點(diǎn)是弧的中點(diǎn),現(xiàn)欲在線段上找一處開挖工作坑(不與點(diǎn),重合),為鋪設(shè)三條地下天燃?xì)夤芫,,,已知米,,記,該三條地下天燃?xì)夤芫的總長(zhǎng)度為米.

(1)將表示成的函數(shù),并寫出的范圍;

(2)請(qǐng)確定工作坑的位置,使此處地下天燃?xì)夤芫的總長(zhǎng)度最小,并求出總長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知復(fù)數(shù),是實(shí)數(shù),是虛數(shù)單位.

(1)求復(fù)數(shù);

(2)若復(fù)數(shù)所表示的點(diǎn)在第一象限,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分14分)如圖,三角形所在的平面與長(zhǎng)方形所在的平面垂直,,

(1)證明:平面;

(2)證明:;

(3)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,以短軸端點(diǎn)和焦點(diǎn)為頂點(diǎn)的四邊形的周長(zhǎng)為.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程及焦點(diǎn)坐標(biāo).

(Ⅱ)過橢圓的右焦點(diǎn)作軸的垂線,交橢圓于兩點(diǎn),過橢圓上不同于點(diǎn)、的任意一點(diǎn),作直線、分別交軸于、兩點(diǎn).證明:點(diǎn)、的橫坐標(biāo)之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】進(jìn)入春天,大氣流動(dòng)性變好,空氣質(zhì)量隨之提高,自然風(fēng)光越來越美,自駕游鄉(xiāng)村游也就越來越熱.某旅游景區(qū)試圖探究車流量與景區(qū)接待能力的相關(guān)性,確保服務(wù)質(zhì)量和游客安全,以便于確定是否對(duì)進(jìn)入景區(qū)車輛實(shí)施限行.為此,該景區(qū)采集到過去一周內(nèi)某時(shí)段車流量與接待能力指數(shù)的數(shù)據(jù)如表:

時(shí)間

周一

周二

周三

周四

周五

周六

周日

車流量(x千輛)

10

9

9.5

10.5

11

8

8.5

接待能力指數(shù)y

78

76

77

79

80

73

75

I)根據(jù)表中周一到周五的數(shù)據(jù),求y關(guān)于x的線性回歸方程.

(Ⅱ)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2,則認(rèn)為該線性回歸方程是可靠的.請(qǐng)根據(jù)周六和周日數(shù)據(jù),判定所得的線性回歸方程是否可靠?

附參考公式及參考數(shù)據(jù):線性回歸方程,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P—ABCD中,四邊形ABCD是矩形,平面PCD⊥平面ABCD,MPC中點(diǎn).求證:

(1)PA∥平面MDB;

(2)PDBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】央視傳媒為了解央視舉辦的“朗讀者”節(jié)目的收視時(shí)間情況,隨機(jī)抽取了某市名觀眾進(jìn)行調(diào)查,其中有名男觀眾和名女觀眾,將這名觀眾收視時(shí)間編成如圖所示的莖葉圖(單位:分鐘),收視時(shí)間在分鐘以上(包括分鐘)的稱為“朗讀愛好者”,收視時(shí)間在分鐘以下(不包括分鐘)的稱為“非朗讀愛好者”.

(1)若采用分層抽樣的方法從“朗讀愛好者”和“非朗讀愛好者”中隨機(jī)抽取名,再?gòu)倪@名觀眾中任選名,求至少選到名“朗讀愛好者”的概率;

(2)若從收視時(shí)間在40分鐘以上(包括40分鐘)的所有觀眾中選出男、女觀眾各1名,求選出的這兩名觀眾時(shí)間相差5分鐘以上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了讓學(xué)生更多的了解數(shù)學(xué)史知識(shí),某中學(xué)高二年級(jí)舉辦了一次追尋先哲的足跡,傾聽數(shù)學(xué)的聲音的數(shù)學(xué)史知識(shí)競(jìng)賽活動(dòng),共有800名學(xué)生參加了這次競(jìng)賽,為了解本次競(jìng)賽的成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果見下表.請(qǐng)你根據(jù)頻率分布表解答下列問題:

序號(hào)

分組(分?jǐn)?shù))

組中值

頻數(shù)(人數(shù))

頻率

1

65

0.12

2

75

20

3

85

0.24

4

95

合計(jì)

50

1

1)填充頻率分布表中的空格;

2)規(guī)定成績(jī)不低于85分的同學(xué)能獲獎(jiǎng),請(qǐng)估計(jì)在參加的800名學(xué)生中大概有多少名同學(xué)獲獎(jiǎng)?

3)在上述統(tǒng)計(jì)數(shù)據(jù)的分析中有一項(xiàng)計(jì)算見算法流程圖,求輸出的的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案