【題目】(本小題滿分14分)如圖,三角形所在的平面與長方形所在的平面垂直,,,.
(1)證明:平面;
(2)證明:;
(3)求點到平面的距離.
【答案】(1)證明見解析;(2)證明見解析;(3).
【解析】
試題分析:(1)由四邊形是長方形可證,進(jìn)而可證平面;(2)先證,再證平面,進(jìn)而可證;(3)取的中點,連結(jié)和,先證平面,再設(shè)點到平面的距離為,利用可得的值,進(jìn)而可得點到平面的距離.
試題解析:(1)因為四邊形是長方形,所以,因為平面,平面,所以平面
(2)因為四邊形是長方形,所以,因為平面平面,平面平面,平面,所以平面,因為平面,所以
(3)取的中點,連結(jié)和,因為,所以,在中,
,因為平面平面,平面平面,平面,所以平面,由(2)知:平面,由(1)知:,所以平面,因為平面,所以,設(shè)點到平面的距離為,因為,所以,即,所以點到平面的距離是
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,以橢圓的短軸為直徑的圓與直線相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓過右焦點的弦為、過原點的弦為,若,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
如圖在直三棱柱ABC—A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點D是AB的
中點.
(1) 求證: AC⊥BC1
(2) 求證:AC1∥平面CDB1
(3) 求異面直線AC1與B1C所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的值域為,函數(shù)().
(1)求;
(2)求函數(shù)的值域;
(3)當(dāng)時,若函數(shù)有零點,求的取值范圍,并討論零點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓上一點關(guān)于直線的對稱點仍在圓上,直線截得圓的弦長為.
(1)求圓的方程;
(2)設(shè)是直線上的動點,是圓的兩條切線,為切點,求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐S﹣ABCD的底面為正方形,SD⊥底面ABCD,則下列結(jié)論中,錯誤的是( 。
A.AC⊥SB
B.BC∥平面SAD
C.SA和SC與平面SBD所成的角相等
D.異面直線AB與SC所成的角和異面直線CD與SA所成的角相等
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“現(xiàn)代五項”是由現(xiàn)代奧林匹克之父顧拜旦先生創(chuàng)立的運動項目,包含射擊、擊劍、游泳、馬術(shù)和越野五項運動.規(guī)定每一項運動的前三名得分都分別為,,(,且),每位選手各項得分之和為最終得分.在一次比賽中,只有甲、乙、丙三人參加“現(xiàn)代五項”,甲最終得22分,乙和丙最終各得9分,且乙的馬術(shù)比賽獲得了第一名.則:__________,游泳比賽的第三名是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩地相距1000,貨車從甲地勻速行駛到乙地,速度不得超過80,已知貨車每小時的運輸成本(單位:元)由可變成本和固定成本組成,可變成本是速度平方的倍,固定成本為元.
(Ⅰ)將全程運輸成本(元)表示為速度()的函數(shù),并指出這個函數(shù)的定義域;
(Ⅱ)為了使全程運輸成本最小,貨車應(yīng)以多大的速度行駛?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動點與兩個定點,的距離的比為.
(1)求動點的軌跡的方程;
(2)過點的直線與曲線交于、兩點,求線段長度的最小值;
(3)已知圓的圓心為,且圓與軸相切,若圓與曲線有公共點,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com