【題目】已知動點與兩個定點的距離的比為.

(1)求動點的軌跡的方程;

(2)過點的直線與曲線交于兩點,求線段長度的最小值;

(3)已知圓的圓心為,且圓軸相切,若圓與曲線有公共點,求實數(shù)的取值范圍.

【答案】(1) .(2) .(3).

【解析】

1)根據(jù)兩點間距離公式,及動點與兩個定點,的距離的比為,代入化簡即可求得動點P的軌跡方程。

2)根據(jù)(1)中求的軌跡方程,判斷出點在圓內(nèi),則當直線滿足MN的值最小,根據(jù)垂徑定理即可求得最小值。

3)表示出圓Q的方程,根據(jù)兩個圓有公共點的條件,可知兩個圓的圓心距滿足,解不等式即可求得t的取值范圍。

1)由題意知:設

,即,

所以

整理得.

所以動點的軌跡的方程為.

2)由(1)知軌跡是以為圓心,以2為半徑的圓.

又因為,所以點在圓內(nèi),

所以當線段的長度最小時,,

所以圓心到直線的距離為,

此時,線段的長為,

所以,線段長度的最小值為.

3)因為點的坐標為,且圓軸相切,所以圓的半徑為,

所以,圓的方程為.

因為,圓與圓有公共點,

又圓與圓的兩圓心距離為

,

所以,

解得:.

所以,實數(shù)的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分14分)如圖,三角形所在的平面與長方形所在的平面垂直,,,

(1)證明:平面;

(2)證明:;

(3)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】央視傳媒為了解央視舉辦的“朗讀者”節(jié)目的收視時間情況,隨機抽取了某市名觀眾進行調(diào)查,其中有名男觀眾和名女觀眾,將這名觀眾收視時間編成如圖所示的莖葉圖(單位:分鐘),收視時間在分鐘以上(包括分鐘)的稱為“朗讀愛好者”,收視時間在分鐘以下(不包括分鐘)的稱為“非朗讀愛好者”.

(1)若采用分層抽樣的方法從“朗讀愛好者”和“非朗讀愛好者”中隨機抽取名,再從這名觀眾中任選名,求至少選到名“朗讀愛好者”的概率;

(2)若從收視時間在40分鐘以上(包括40分鐘)的所有觀眾中選出男、女觀眾各1名,求選出的這兩名觀眾時間相差5分鐘以上的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某中學甲、乙兩班各隨機抽取 名同學,測量他們的身高(單位: ),所得數(shù)據(jù)用莖葉圖表示如下,由此可估計甲、乙兩班同學的身高情況,則下列結論正確的是( )

A. 甲班同學身高的方差較大 B. 甲班同學身高的平均值較大

C. 甲班同學身高的中位數(shù)較大 D. 甲班同學身高在 以上的人數(shù)較多

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過拋物線 的焦點的直線與拋物線在第一象限的交點為,與拋物線準線的交點為 ,點在拋物線準線上的射影為,若 的面積為 .

( 1 ) 求拋物線的標準方程;

( 2 ) 過焦點的直線與拋物線交于兩點,拋物線在點處的切線分別為,且相交于點,軸交于點,求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩家銷售公司擬各招聘一名產(chǎn)品推銷員,日工資方案如下: 甲公司規(guī)定底薪80元,每銷售一件產(chǎn)品提成1; 乙公司規(guī)定底薪120元,日銷售量不超過45件沒有提成,超過45件的部分每件提成8.

1)請將兩家公司各一名推銷員的日工資 (單位: ) 分別表示為日銷售件數(shù)的函數(shù)關系式;

2)從兩家公司各隨機選取一名推銷員,對他們過去100天的銷售情況進行統(tǒng)計,得到如下條形圖.若將該頻率視為概率,分別求甲、乙兩家公司一名推銷員的日工資超過125元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了讓學生更多的了解數(shù)學史知識,某中學高二年級舉辦了一次追尋先哲的足跡,傾聽數(shù)學的聲音的數(shù)學史知識競賽活動,共有800名學生參加了這次競賽,為了解本次競賽的成績情況,從中抽取了部分學生的成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計,統(tǒng)計結果見下表.請你根據(jù)頻率分布表解答下列問題:

序號

分組(分數(shù))

組中值

頻數(shù)(人數(shù))

頻率

1

65

0.12

2

75

20

3

85

0.24

4

95

合計

50

1

1)填充頻率分布表中的空格;

2)規(guī)定成績不低于85分的同學能獲獎,請估計在參加的800名學生中大概有多少名同學獲獎?

3)在上述統(tǒng)計數(shù)據(jù)的分析中有一項計算見算法流程圖,求輸出的的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四個正方體中,是正方體的一條體對角線,點分別為其所在棱的中點,能得出平面的圖形為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】寒假即將到來,某賓館有50個房間供游客住宿,當每個房間的房價為每天180元時,房間會全部住滿.當每個房間每天的房價每增加10元時,就會有一個房間空閑.賓館需對游客居住的每個房間每在支出20元的各種費用(人工費,消耗費用等等).受市場調(diào)控,每個房間每天的房價不得高于340.設每個房間的房價每天增加x(x10的正整數(shù)倍)

(1)設賓館一天的利潤為W, Wx的函數(shù)關系式;

(2)一天訂住多少個房間時,賓館的利潤最大?最大利潤是多少元?

查看答案和解析>>

同步練習冊答案