方程3x2-10x+k=0(k∈R)有相異的兩同號實根的充要條件是
 
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:設(shè)方程的兩根為x1,x2,可得
△=(-10)2-4×3k>0
x1x2=
k
3
>0
解不等式可得.
解答: 解:設(shè)方程的兩根為x1,x2,
由題意結(jié)合韋達定理可得
△=(-10)2-4×3k>0
x1x2=
k
3
>0

解關(guān)于k的不等式可得0<k<
25
3
,
故答案為:0<k<
25
3
點評:本題考查一元二次方程根的分布,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求曲線C:
x=
3
cosθ
y=sinθ
(θ為參數(shù))上的點到直線ρsin(θ+
π
4
)=2
2
的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在(0,+∞)上的函數(shù)f(x)滿足下面三個條件:①f(2)=0;②對于任意正實數(shù)a,b都有f(ab)=f(a)+f(b)-1;③當(dāng)x>1時,總有f(x)<1.
(1)求f(1)及f(
1
2
)的值;
(2)求證f(x)在(0,+∞)上是減函數(shù).
(3)求不等式f(x-1)+f(x-2)<1的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn=an+1-2n+1+1,n∈N*,且a1=1
(1)證明數(shù)列{
an
2n
}是等差數(shù)列;
(2)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在某次數(shù)學(xué)考試中,從高一年級300名男生和300名女生中,各隨機抽取20名學(xué)生的成績進行統(tǒng)計,作出莖葉圖如圖所示:
(1)根據(jù)樣本統(tǒng)計結(jié)果,估計全年級90分以上的共有多少人?
(2)若記不低于90分者為優(yōu)秀,則在抽取的樣本里不低于86分的男生和女生中各選一人,求兩人均為優(yōu)秀的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系x0y中,直線
x=a-t
y=t
(t為參數(shù))與圓
x=1+cosθ
y=sinθ
(θ為參數(shù))相切,切點在第一象限,則實數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列式子:1+
1
22
3
2
,1+
1
22
+
1
32
5
3
,1+
1
22
+
1
32
+
1
42
7
4
,…,根據(jù)以上式子可以猜想1+
1
22
+
1
32
+…+
1
20142
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓C的極坐標(biāo)方程為ρ=2cos(θ+
π
4
),直線l的參數(shù)方程為
x=
2
t
y=
2
t+4
2
(其中t為參數(shù)),過直線l上的點P向圓C引切線,切點為A,則切線長PA的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義域在R上的函數(shù)f(x)對任意實數(shù)x,y滿足f(x+y)=f(x)+f(y)+2xy,且f(1)=2,則f(-3)=
 

查看答案和解析>>

同步練習(xí)冊答案