已知F1,F(xiàn)2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn),過F1且垂直于x軸的直線交橢圓C于A、B兩點(diǎn),若△ABF2為直角三角形,則橢圓C的離心率e為( 。
A、
2
-1
B、
3
-1
C、
2
2
D、
3
3
考點(diǎn):橢圓的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)題意,畫出圖形,結(jié)合圖形得出|AF1|=|F1F2|,即
b2
a
=2c;再由橢圓的幾何性質(zhì),求出橢圓的離心率.
解答: 解:根據(jù)題意,畫出圖形,如圖所示;
在橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)中,
△ABF2為直角三角形,
由橢圓的對稱性,得|AF1|=|F1F2|,
b2
a
=2c;
a2-c2
a
=2c,
1
e
-e-2=0;
解得e=
2
-1,或e=-
2
-1(舍去);
∴橢圓C的離心率e=
2
-1.
故選:A.
點(diǎn)評:本題考查了橢圓的定義與幾何性質(zhì)的應(yīng)用問題,解題時應(yīng)畫出圖形,結(jié)合圖形解答問題,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}是等差數(shù)列,Sn為{an}的前n項(xiàng)和,S7=7,S15=75,已知Tn為數(shù)列{
Sn
n
}的前n項(xiàng)和,則Tn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由y=|x|與圓x2+y2=4所圍成的圖形面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
2x3+3x2+1(x≤0)
eax(x>0)
在[-2,2]上的最大值為2,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=lnx-2x+5的單調(diào)遞增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,周期為π且圖象關(guān)于直線x=
π
3
對稱的函數(shù)是( 。
A、f(x)=2sin(
x
2
+
π
3
B、f(x)=2sin(2x+
π
3
C、f(x)=2sin(
x
2
-
π
6
D、f(x)=2sin(2x-
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x+
1
x
,則f(x)為( 。
A、既是奇函數(shù)又是偶函數(shù)
B、非奇非偶函數(shù)
C、奇函數(shù)
D、偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,在(0,+∞)上為增函數(shù)的是(  )
A、f(x)=sin2x
B、f(x)=xex
C、f(x)=x3-x
D、f(x)=-x+lnx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x+3
+
1
x+2
的定義域是( 。
A、{x|x≠2}
B、{x|x≥-3}
C、{x|x≥-3或x≠-2}
D、{x|x≥-3且x≠-2}

查看答案和解析>>

同步練習(xí)冊答案