【題目】下列判斷正確的是( )
A.線性回歸直線必經(jīng)過點(diǎn),,…中心點(diǎn)
B.從獨(dú)立性檢驗可知有99%的把握認(rèn)為吃地溝油與患胃腸癌有關(guān)系時,我們就說如果某人吃地溝油,那么他有99%可能患胃腸癌
C.若兩個隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對值越接近于1
D.將一組數(shù)據(jù)的每一個數(shù)據(jù)都加上或減去同一個常數(shù)后,其方差也要加上或減去這個常數(shù)
【答案】AC
【解析】
根據(jù)線性回歸直線的性質(zhì)可判斷A;由獨(dú)立性檢驗知識可判斷B;由相關(guān)系數(shù)的概念可判斷C;由方差的定義可判斷D;
對于線性回歸方程,直線必經(jīng)過樣本中心點(diǎn),故A正確;
有的把握認(rèn)為吃地溝油與患胃腸癌有關(guān)系時,但并不代表若某一個人吃地溝油,他有的可能患胃腸癌,故B錯誤;
由相關(guān)系數(shù)的概念知兩個隨機(jī)變量的線性相關(guān)性越強(qiáng),相關(guān)系數(shù)的絕對值越接近于1,故C正確;
由方差的定義得將一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差恒不變,故D錯誤;
故選:AC.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在疫情這一特殊時期,教育行政部門部署了“停課不停學(xué)”的行動,全力幫助學(xué)生在線學(xué)習(xí).復(fù)課后進(jìn)行了摸底考試,某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生這次摸底考試的數(shù)學(xué)成績與在線學(xué)習(xí)數(shù)學(xué)時長之間的相關(guān)關(guān)系,對在校高三學(xué)生隨機(jī)抽取45名進(jìn)行調(diào)查.知道其中有25人每天在線學(xué)習(xí)數(shù)學(xué)的時長是不超過1小時的,得到了如下的等高條形圖:
(Ⅰ)是否有的把握認(rèn)為“高三學(xué)生的這次摸底考試數(shù)學(xué)成績與其在線學(xué)習(xí)時長有關(guān)”;
(Ⅱ)將頻率視為概率,從全校高三學(xué)生這次數(shù)學(xué)成績超過120分的學(xué)生中隨機(jī)抽取10人,求抽取的10人中每天在線學(xué)習(xí)時長超過1小時的人數(shù)的數(shù)學(xué)期望和方差.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某媒體對“男女延遲退休”這一公眾關(guān)注的問題進(jìn)行了民意調(diào)查,下表是在某單位調(diào)查后得到的數(shù)據(jù)(人數(shù)):
贊同 | 反對 | 合計 | |
男 | 5 | 6 | 11 |
女 | 11 | 3 | 14 |
合計 | 16 | 9 | 25 |
(1)能否有90%以上的把握認(rèn)為對這一問題的看法與性別有關(guān)?
(2)進(jìn)一步調(diào)查:
①從贊同“男女延遲退休”的人中選出人進(jìn)行陳述發(fā)言,求事件“男士和女士各至少有人發(fā)言”的概率;
②從反對“男女延遲退休”的人中選出人進(jìn)行座談,設(shè)選出的人中女士人數(shù)為,求的分布列和數(shù)學(xué)期望.
附:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】焦點(diǎn)在x軸上的橢圓C:經(jīng)過點(diǎn),橢圓C的離心率為.,是橢圓的左、右焦點(diǎn),P為橢圓上任意點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)M為的中點(diǎn)(O為坐標(biāo)原點(diǎn)),過M且平行于OP的直線l交橢圓C于A,B兩點(diǎn),是否存在實(shí)數(shù),使得;若存在,請求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某品牌經(jīng)銷商在一廣場隨機(jī)采訪男性和女性用戶各50名,其中每天玩微信超過6小時的用戶列為“微信控”,否則稱其為“非微信控”,調(diào)查結(jié)果如下:
微信控 | 非微信控 | 合計 | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合計 | 56 | 44 | 100 |
(1)根據(jù)以上數(shù)據(jù),能否有95%的把握認(rèn)為“微信控”與“性別”有關(guān)?
(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人,求所抽取的5人中“微信控”和“非微信控”的人數(shù);
(3)從(2)中抽取的5位女性中,再隨機(jī)抽取3人贈送禮品,試求抽取3人中恰有2人位“微信控”的概率.
參考公式: ,其中.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了鼓勵市民節(jié)約用電,實(shí)行“階梯式”電價,將該市每戶居民的月用電量劃分為三檔,月用電量不超過200度的部分按元/度收費(fèi),超過200度但不超過400度的部分按元/度收費(fèi),超過400度的部分按1.0元/度收費(fèi).
(Ⅰ)求某戶居民用電費(fèi)用(單位:元)關(guān)于月用電量(單位:度)的函數(shù)解析式;
(Ⅱ)為了了解居民的用電情況,通過抽樣,獲得了今年1月份100戶居民每戶的用電量,統(tǒng)計分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年1月份用電費(fèi)用不超過260元的占,求, 的值;
(Ⅲ)在滿足(Ⅱ)的條件下,若以這100戶居民用電量的頻率代替該月全市居民用戶用電量的概率,且同組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)代替,記為該居民用戶1月份的用電費(fèi)用,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地政府為科技興市,欲將如圖所示的一塊不規(guī)則的非農(nóng)業(yè)用地規(guī)劃建成一個矩形的高科技工業(yè)園區(qū).已知,,,曲線段是以點(diǎn)為頂點(diǎn)且開口向上的拋物線的一段.如果要使矩形的相鄰兩邊分別落在、上,且一個頂點(diǎn)落在曲線段上,問應(yīng)如何規(guī)劃才能使矩形工業(yè)園區(qū)的用地面積最大?并求出最大的用地面積(精確到).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐中,側(cè)面底面,底面是平行四邊形,,,,是中點(diǎn),點(diǎn)在線段上.
(Ⅰ)證明:;
(Ⅱ)若 ,求實(shí)數(shù)使直線與平面所成角和直線與平面所成角相等.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com