如圖:通過(guò)以“直”代“曲”無(wú)限逼近的方法求曲邊梯形的面積的步驟是
 
、近似代替、
 
、取極限.
考點(diǎn):極限及其運(yùn)算
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:利用以“直”代“曲”無(wú)限逼近的方法求曲邊梯形的面積的步驟的四部曲即可得出.
解答: 解:通過(guò)以“直”代“曲”無(wú)限逼近的方法求曲邊梯形的面積的步驟是:分割、近似代替、求和、取極限.
故答案分別為:分割,求和.
點(diǎn)評(píng):本題考查了以“直”代“曲”無(wú)限逼近的方法求曲邊梯形的面積的步驟的四部曲,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|0<x+3≤9},B={x|b-3<x<b+7},M={x|x2-2x-24≤0且|x|<5},全集U=R.
(1)求A∩M; 
(2)若B∪(CUM)=R,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若C
 
x2-x
16
=C
 
5x-5
16
,則x的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l過(guò)點(diǎn)P(-3,4),它的傾斜角是直線y=x+1的兩倍,則直線l的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(4,-2,-4),
b
=(6,-3,2),則(
a
+
b
)•(
a
-
b
)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

sin220°+cos250°+sin20°cos50°=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:x2-8x-20≤0,q:x2-2x+1-m2≤0(m>0),且¬p是¬q的必要不充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a=3,b=
7
,c=2,則角B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

冪指函數(shù)y=f(x)g(x)在求導(dǎo)數(shù)時(shí),可以運(yùn)用對(duì)數(shù)法:在函數(shù)解析式兩邊求對(duì)數(shù)得ln y=g(x)ln f(x),兩邊求導(dǎo)數(shù)得
y′
y
=g′(x)ln f(x)+g(x)
f′(x)
f(x)
,于是y′=f(x)g(x)•[g′(x)lnf(x)+g(x)
f′(x)
f(x)
].運(yùn)用此法可以探求得知y=x
1
x
的一個(gè)單調(diào)遞增區(qū)間為( 。
A、(0,2)
B、(2,3)
C、(e,4)
D、(3,8)

查看答案和解析>>

同步練習(xí)冊(cè)答案