【題目】已知函數(shù)f(x)=lnx﹣x2+ax,a∈R.
(Ⅰ)證明lnx≤x﹣1;
(Ⅱ)若a≥1,討論函數(shù)f(x)的零點(diǎn)個(gè)數(shù).
【答案】(Ⅰ)見(jiàn)解析(Ⅱ)見(jiàn)解析
【解析】
(Ⅰ)令進(jìn)而求導(dǎo)求最值即可證得;
(Ⅱ)求函數(shù)導(dǎo)數(shù),分析單調(diào)性,由f(1>0,及,利用零點(diǎn)存在定理即可得解.
(Ⅰ)證明:令,
可得:x∈(0,1)時(shí),g′(x)>0,函數(shù)g(x)單調(diào)遞增;x∈(1,+∞)時(shí),g′(x)<0,函數(shù)g(x)單調(diào)遞減.
∴可得x=1時(shí),函數(shù)g(x)取得極大值即最大值,∴g(x)≤g(1)=0,即lnx≤x﹣1.
(II)解:根據(jù)題意,.
令,解得 ,(負(fù)值舍去),
在(0,x0)上,,函數(shù)f(x)單調(diào)遞增;在(x0,+∞)上,,函數(shù)f(x)單調(diào)遞減.
∴f(x)max=f(x0).
當(dāng)a=1時(shí),x0=1,f(x)max=f(1)=0,此時(shí)函數(shù)f(x)只有一個(gè)零點(diǎn)1.
當(dāng)a>1時(shí),,f(1)=a﹣1>0, .
.
∴函數(shù)f(x)在區(qū)間和區(qū)間(1,2a)上各有一個(gè)零點(diǎn).
綜上可得:當(dāng)a=1時(shí),函數(shù)f(x)只有一個(gè)零點(diǎn)1.
當(dāng)a>1時(shí),函數(shù)f(x)有兩個(gè)零點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)若在上為單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(2)若,且,求證:對(duì)定義域內(nèi)的任意實(shí)數(shù),不等式恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)若,求函數(shù)在區(qū)間(其中,是自然對(duì)數(shù)的底數(shù))上的最小值;
(2)若存在與函數(shù),的圖象都相切的直線,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某校學(xué)生參加社區(qū)服務(wù)的情況,采用按性別分層抽樣的方法進(jìn)行調(diào)查.已知該校共有學(xué)生960人,其中男生560人,從全校學(xué)生中抽取了容量為的樣本,得到一周參加社區(qū)服務(wù)的時(shí)間的統(tǒng)計(jì)數(shù)據(jù)好下表:
超過(guò)1小時(shí) | 不超過(guò)1小時(shí) | |
男 | 20 | 8 |
女 | 12 | m |
(Ⅰ)求,;
(Ⅱ)能否有95%的把握認(rèn)為該校學(xué)生一周參加社區(qū)服務(wù)時(shí)間是否超過(guò)1小時(shí)與性別有關(guān)?
(Ⅲ)以樣本中學(xué)生參加社區(qū)服務(wù)時(shí)間超過(guò)1小時(shí)的頻率作為該事件發(fā)生的概率,現(xiàn)從該校學(xué)生中隨機(jī)調(diào)查6名學(xué)生,試估計(jì)6名學(xué)生中一周參加社區(qū)服務(wù)時(shí)間超過(guò)1小時(shí)的人數(shù).
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為了提高利潤(rùn),從2014年至2018年每年對(duì)生產(chǎn)環(huán)節(jié)的改進(jìn)進(jìn)行投資,投資金額與年利潤(rùn)增長(zhǎng)的數(shù)據(jù)如下表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
投資金額x(萬(wàn)元) | 5 | 5.5 | 6 | 6.5 | 7 |
年利潤(rùn)增長(zhǎng)y(萬(wàn)元) | 7.5 | 8 | 9 | 10 | 11.5 |
(1)請(qǐng)用最小二乘法求出y關(guān)于x的回歸直線方程;
(2)如果2020年該公司計(jì)劃對(duì)生產(chǎn)環(huán)節(jié)的改進(jìn)的投資金額為8萬(wàn)元,估計(jì)該公司在該年的年利潤(rùn)增長(zhǎng)為多少?
參考公式:, 參考數(shù)據(jù):,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正三棱柱的底面邊長(zhǎng)為,為的中點(diǎn),平面與平面所成的銳二面角的正切值是,則四棱錐外接球的表面積為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(,,)的圖象如圖所示,令,則下列關(guān)于函數(shù)的說(shuō)法中正確的是( )
A. 函數(shù)圖象的對(duì)稱軸方程為
B. 函數(shù)的最大值為2
C. 函數(shù)的圖象上存在點(diǎn),使得在點(diǎn)處的切線與直線平行
D. 若函數(shù)的兩個(gè)不同零點(diǎn)分別為,,則最小值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,多面體ABCDEF中,四邊形ABCD為矩形,二面角A-CD-F為60°,DE∥CF,CD⊥DE,AD=2,DE=DC=3,CF=6.
(1)求證:BF∥平面ADE;
(2)在線段CF上求一點(diǎn)G,使銳二面角B-EG-D的余弦值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)點(diǎn)P,Q分別是曲線y=xe﹣x(e是自然對(duì)數(shù)的底數(shù))和直線y=x+3上的動(dòng)點(diǎn),則P,Q兩點(diǎn)間距離的最小值為( 。
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com