設(shè)圓(x+1)2+y2=25的圓心為C,A(1,0)是圓內(nèi)一定點(diǎn),Q為圓周上任一點(diǎn),線段AQ的垂直平分線與CQ的連線交于點(diǎn)M,則M的軌跡方程為( )
A.-=1 B.+=1
C.-=1 D.+=1
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知橢圓C:+=1(a>b>0)的離心率為,橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)在的三角形的面積為.
(1)求橢圓C的方程;
(2)已知?jiǎng)又本y=k(x+1)與橢圓C相交于A、B兩點(diǎn).
①若線段AB中點(diǎn)的橫坐標(biāo)為-,求斜率k的值;
②若點(diǎn)M(-,0),求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知點(diǎn)A(2,0)、B(4,0),動(dòng)點(diǎn)P在拋物線y2=-4x上運(yùn)動(dòng),則取得最小值時(shí)的點(diǎn)P的坐標(biāo)是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知拋物線y2=2px(p>0),過(guò)其焦點(diǎn)且斜率為1的直線交拋物線于A、B兩點(diǎn),若線段AB的中點(diǎn)的縱坐標(biāo)為2,則該拋物線的準(zhǔn)線方程為_(kāi)_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖所示,在平面直角坐標(biāo)系中,N為圓A:(x+1)2+y2=16上的一動(dòng)點(diǎn),點(diǎn)B(1,0),點(diǎn)M是BN的中點(diǎn),點(diǎn)P在線段AN上,且=0.
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)試判斷以PB為直徑的圓與圓x2+y2=4的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)曲線x2-y2=0與拋物線y2=-4x的準(zhǔn)線圍成的三角形區(qū)域(包含邊界)為D,P(x,y)為D內(nèi)的一個(gè)動(dòng)點(diǎn),則目標(biāo)函數(shù)z=x-2y+5的最大值為( )
A.4 B.5
C.8 D.12
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,在四棱錐P-ABCD中,底面ABCD為矩形,側(cè)棱PA⊥底面ABCD,AB=,BC=1,PA=2,E為PD的中點(diǎn).
(1)求直線AC與PB所成角的余弦值;
(2)在側(cè)面PAB內(nèi)找一點(diǎn)N,使NE⊥平面PAC,并求出點(diǎn)N到AB和AP的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com