數(shù)列{an}滿足a1=-13,
1
an
-
2
anan+1
-
1
an+1
=0,且前n項的和為Sn
(1)證明:數(shù)列{an}為等差數(shù)列;
(2)求數(shù)列{
Sn
n
}的前n項和Tn
考點:數(shù)列的求和,等差關(guān)系的確定
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知條件得
1
an
-
1
an+1
=
2
anan+1
,由此能證明{an}為首項a1=-13,公差為d=2的等差數(shù)列.
(2)由Sn=-13n+
n(n-1)
2
×2
=n2-14n,得
Sn
n
=n-14
,由此能求出數(shù)列{
Sn
n
}的前n項和Tn
解答: (1)證明:∵數(shù)列{an}滿足a1=-13,
1
an
-
2
anan+1
-
1
an+1
=0,
1
an
-
1
an+1
=
2
anan+1
,
∴an+1-an=2,
∴{an}為首項a1=-13,公差為d=2的等差數(shù)列.
(2)解:∵{an}為首項a1=-13,公差為d=2的等差數(shù)列,
Sn=-13n+
n(n-1)
2
×2
=n2-14n,
Sn
n
=n-14
,
∴數(shù)列{
Sn
n
}是首項為-13,公差為1的等差數(shù)列,
∴Tn=-13n+
n(n-1)
2
×1
=
1
2
n2-
27
2
n
點評:本題考查等差數(shù)列的證明,考查數(shù)列的前n項和的求法,解題時要認真審題,注意等差數(shù)列的性質(zhì)的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若sin(α+β)=
4
5
,sin(α-β)=
3
5
,則
tanα
tanβ
等于(  )
A、7
B、-7
C、
1
7
D、-
1
7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個圓柱的母線長度為2,底為半徑為1的圓,則此圓柱的側(cè)面積是( 。
A、πB、2πC、3πD、4π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}的前n項和Sn=2n+m(m∈R).
(1)求m的值及{an}的通項公式;
(2)設(shè)bn=2log2an-13,數(shù)列{bn}的前n項和為Tn,求Tn的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(2cos(x-
π
6
),-2sin(x-
π
4
)),
b
=(cos(x-
π
6
),-sin(x+
π
4
)),f(x)=
a
b
-2.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間[-
π
12
π
12
]的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱柱ABCD-A1B1C1D1中,側(cè)棱AA1⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點.
(Ⅰ)求證:B1C1⊥CE;
(Ⅱ)求二面角B1-CE-C1的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(2cosx,
2
cosx-1),
b
=(
3
sinx,
2
cosx+1),函數(shù)f(x)=
a
b
,x∈R.
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)將函數(shù)y=f(x)的圖象上各點的縱坐標保持不變,橫坐標縮短到原來的
1
2
,把所得到的圖象再向左平移
π
6
單位,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在區(qū)間[0,
π
8
]
上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一名箭手進行射箭訓練,箭手連續(xù)射2支箭,已知射手每只箭射中10環(huán)的概率是
1
4
,射中9環(huán)的概率是
1
4
,射中8環(huán)的概率是
1
2
,假設(shè)每次射箭結(jié)果互相獨立.
(1)求該射手兩次射中的總環(huán)數(shù)為18環(huán)的概率;
(2)設(shè)該箭手兩次射中的總環(huán)數(shù)為ζ,求ζ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平面直角坐標系xOy中,直線l的參數(shù)方程為
x=2-
3
t
y=t
(t為參數(shù)),圓C的方程為x2+y2=4.以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系.
(Ⅰ)求直線l和圓C的極坐標方程;
(Ⅱ)求直線l和圓C的交點的極坐標(要求極角θ∈[0,2π))

查看答案和解析>>

同步練習冊答案