一個等差數(shù)列的前20項的和為354,前20項中偶數(shù)項的和與奇數(shù)項的和之比為32:27,則該數(shù)列的公差d等于
 
考點:等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:由題意,列出關(guān)于前20項中偶數(shù)項的和與奇數(shù)項的和的方程組,可解得它們的值,而S-S=10d,代入可解.
解答: 解:設(shè)首項為a1,公差為d,
則由題意可得
S+S=354
S
S
=
32
27
,
解得
S=192
S=162

又S-S=10d=30,
∴d=3.
故答案為:3.
點評:本題考查等差數(shù)列的性質(zhì)和公差的定義,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的公差和首項都不等于0,且a2、a4、a8成等比數(shù)列,則下列式子的值最小的是( 。
A、
a2
a1
B、
a3
a2
C、
a4
a3
D、
a5
a4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F(x)=f(x)-g(x),其中f(x)=2loga(4-x)(a>0且a≠1),并且當(dāng)且僅當(dāng)點P(x0,y0)在f(x)的圖象上時,點Q(-
1
5
x0,
1
2
y0)在y=g(x)的圖象上.
(1)求y=g(x)的解析式;
(2)解關(guān)于x的不等式F(x)≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的方程為
x2
a2
+
y2
b2
=1(a>b>0),過橢圓右焦點且與x軸垂直的直線與橢圓交于P、Q兩點,x軸一點M(
a2
c
,0),若△PQM為正三角形,則橢圓的離心率等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某次有1000人參加數(shù)學(xué)摸底考試,其成績的頻率分布直方圖如題(16)圖所示,規(guī)定85分及以上為優(yōu)秀.
(1)下表是這次考試成績的頻數(shù)分布表,求正整數(shù)a,b的值;
區(qū)間[75,80)[80,85)[85,90)[90,95)[95,100]
人數(shù)50a350300b
(2)某文科班數(shù)學(xué)老師抽取10名同學(xué)的數(shù)學(xué)成績對該科進(jìn)行抽樣分析,得到第i個同學(xué)每天花在數(shù)學(xué)上的學(xué)習(xí)時間xi(單位:小時)與數(shù)學(xué)考試成績yi(單位:百分)的數(shù)據(jù)資料,算得
10
i=1
xi=15,
10
i=1
yi=10,
10
i=1
xiyi=16,
10
i=1
x_2 
=25,求數(shù)學(xué)考試成績y對每天花在數(shù)學(xué)上的學(xué)習(xí)時間x的線性回歸方程
y
=bx+a;
附:線性回歸方程y=bx+a中,b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n\mathopxlimits-2
,a=
.
y
-b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知變量x,y滿足
x≥2
x+y-4≤0
x-y-1≤0
,則
y
x
的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x2+x,x<0
-x2,x≥0
,若f(f(a))≤2,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
,
b
c
為非0向量,則“
a
b
=
a
c
”是“
b
=
c
”的充要條件是否為真命題,為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個三棱錐的三視圖如圖,則其體積為
 

查看答案和解析>>

同步練習(xí)冊答案