【題目】如圖,在多面體中,四邊形是梯形,,平面,平面⊥平面.

(Ⅰ)求證:平面;

(Ⅱ)若是等邊三角形,,求多面體的體積.

【答案】(1)見(jiàn)解析(2)

【解析】試題分析:(1)過(guò)點(diǎn),根據(jù)面面垂直性質(zhì)定理得平面,由于平面,所以,再根據(jù)線面平行判定定理得平面同樣由,根據(jù)線面平行判定定理得平面,最后根據(jù)面面平行判定定理得平面平面,即得平面.(2)先分割多面體為一個(gè)四棱錐與一個(gè)三棱錐,再找高或證線面垂直,由(1)可得平面,平面,最后根據(jù)錐體體積公式求體積.

試題解析:(Ⅰ)過(guò)點(diǎn),垂足為.

因?yàn)槠矫?/span>平面,平面平面,

平面,所以平面,

平面,所以,又平面,

所以平面

因?yàn)?/span>,平面,平面,

所以平面,又,

所以平面平面,又平面,

所以平面.

(Ⅱ)由(Ⅰ)平面(此時(shí)中點(diǎn)),可得,

,所以平面,

又平面平面,故點(diǎn)到平面的距離為.

所以多面體的體積

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列命題,其中正確的序號(hào)是________(寫(xiě)出所有正確命題的序號(hào)).

①已知集合,,則映射中滿足的映射共有個(gè);

②函數(shù)的圖象關(guān)于對(duì)稱的函數(shù)解析式為;

③若函數(shù)的值域?yàn)?/span>,則實(shí)數(shù)的取值范圍是;

④已知函數(shù)的最大值為,最小值為,則的值等于.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校做了一次關(guān)于“感恩父母”的問(wèn)卷調(diào)查,從8~10歲,11~12歲,13~14歲,15~16歲四個(gè)年齡段回收的問(wèn)卷依次為:120份,180份,240份,x份.因調(diào)查需要,從回收的問(wèn)卷中按年齡段分層抽取容量為300的樣本,其中在11~12歲學(xué)生問(wèn)卷中抽取60份,則在15~16歲學(xué)生中抽取的問(wèn)卷份數(shù)為( )

A.60 B.80 C.120 D.180

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某購(gòu)物中心為了了解顧客使用新推出的某購(gòu)物卡的顧客的年齡分布情況,隨機(jī)調(diào)查了位到購(gòu)物中心購(gòu)物的顧客年齡,并整理后畫(huà)出頻率分布直方圖如圖所示,年齡落在區(qū)間內(nèi)的頻率之比為.

(1) 求顧客年齡值落在區(qū)間內(nèi)的頻率;

(2) 擬利用分層抽樣從年齡在的顧客中選取人召開(kāi)一個(gè)座談會(huì),現(xiàn)從這人中選出人,求這兩人在不同年齡組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知奇函數(shù)fx=ax+ka-x,(a0a≠1,kR).

1)求實(shí)數(shù)k的值;

2)是否存在實(shí)數(shù)a,使函數(shù)y=fx+2ax[-1,1]上的最大值為7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,圓經(jīng)過(guò)橢圓的兩個(gè)焦點(diǎn)和兩個(gè)頂點(diǎn),點(diǎn)在橢圓上,且,.

(Ⅰ)求橢圓的方程和點(diǎn)的坐標(biāo);

(Ⅱ)過(guò)點(diǎn)的直線與圓相交于、兩點(diǎn),過(guò)點(diǎn)垂直的直線與橢圓相交于另一點(diǎn),求的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx=x|x-a|+bx

1)若a=2,且fx)是R上的增函數(shù),求實(shí)數(shù)b的取值范圍;

2)當(dāng)b=0時(shí),若關(guān)于x的方程fx=x+1有三個(gè)實(shí)根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù),

(1)若函數(shù)為奇函數(shù),求m的值;

(2)若函數(shù)上是增函數(shù),求實(shí)數(shù)m的取值范圍;

(3)若函數(shù)上的最小值為,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)O(0,0),A(1,2),B(4,5)=+t,

:(1)t為何值時(shí),點(diǎn)Px軸上y軸上?在第二象限?

(2)四邊形OABP能否成為平行四邊形?若能求出相應(yīng)的t?若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案