分析 ①由題意可得:{△=(a−3)2−4a>0a<0,解出a,即可判斷出結(jié)論;
②x=0時(shí),f(0)=0,即可判斷出正誤;
③變形:函數(shù)y=3−2x2x+2=5−(2+2x)2+2x=52+2x-1,由2x>0,可得12+2x∈(0,12),進(jìn)而得出值域.
④不妨設(shè)正四面體 A-BCD的棱長為2,內(nèi)切球的半徑為r,外接球的半徑為R,利用三棱錐體積計(jì)算公式可得:解得r,R.即可判斷出結(jié)論.
解答 解:①方程x2+(a-3)x+a=0有一個(gè)正實(shí)根,一個(gè)負(fù)實(shí)根,∴{△=(a−3)2−4a>0a<0,解得a<0,故①正確;
②f(x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí),f(x)=2x2+x-1,則x=0時(shí),f(0)=0;
x>0時(shí),-x<0,f(-x)=2x2-x-1,則f(x)=-f(-x)=-2x2+x+1,故②不正確.
③函數(shù)y=3−2x2x+2=5−(2+2x)2+2x=52+2x-1,∵2x>0,∴12+2x∈(0,12),∴y∈(−1,32),故③正確.
④不妨設(shè)正四面體 A-BCD的棱長為2,內(nèi)切球的半徑為r,外接球的半徑為R,則13×√34×22•r×4=13×√34×22×√22−(2√33)2,(√22−(2√33)2−R)2+(2√33)2=R2,解得r=1√6,R=3√6.則V1V2=(rR)3=127,
故④正確.
故答案為:①③④.
點(diǎn)評 本題考查了函數(shù)的奇偶性單調(diào)性、一元二次方程的方程的實(shí)數(shù)根與判別式的關(guān)系、正四面體與正三角形的性質(zhì)、三棱錐的體積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -12,-5 | B. | -12,4 | C. | -13,4 | D. | -10,6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
參賽選手成績所在區(qū)間 | (40,50] | (50,60) |
每名選手能夠進(jìn)入第二輪的概率 | 12 | 23 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 49 | B. | 425 | C. | 25 | D. | 45 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com