已知為函數(shù)圖象上一點,O為坐標原點,記直線的斜率.
(1)若函數(shù)在區(qū)間上存在極值,求實數(shù)m的取值范圍;
(2)當 時,不等式恒成立,求實數(shù)的取值范圍;
(3)求證:.
(1);(2);(3)詳見解析.
解析試題分析:(1)在函數(shù)定義域范圍內求函數(shù)的極值,則極值點在內;(2)首先根據(jù)條件分離出變量,由轉化成求的最小值(利用二次求導判單調性);(3)結合第(2)問構造出含
的不等關系,利用裂項相消法進行化簡求和.
試題解析:(1)由題意, 1分
所以 2分
當時,;當時,.
所以在上單調遞增,在上單調遞減,
故在處取得極大值. 3分
因為函數(shù)在區(qū)間(其中)上存在極值,
所以,得.即實數(shù)的取值范圍是. 4分
(2)由得,令,
則. 6分
令,則,
因為所以,故在上單調遞增. 7分
所以,從而
在上單調遞增,
所以實數(shù)的取值范圍是. 9分
(3)由(2) 知恒成立,
即 11分
令則, 12分
所以, , ,.
將以上個式子相加得:
,
故. 14分
考點:1.函數(shù)極值、最值的求法;2.函數(shù)單調性的判定;3.恒成立問題的轉化.
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1) 當時,求函數(shù)的單調區(qū)間;
(2) 當時,函數(shù)圖象上的點都在所表示的平面區(qū)域內,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)的導函數(shù)是,在處取得極值,且.
(Ⅰ)求的極大值和極小值;
(Ⅱ)記在閉區(qū)間上的最大值為,若對任意的總有成立,求的取值范圍;
(Ⅲ)設是曲線上的任意一點.當時,求直線OM斜率的最小值,據(jù)此判斷與的大小關系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知是函數(shù)的兩個極值點.
(1)若,,求函數(shù)的解析式;
(2)若,求實數(shù)的最大值;
(3)設函數(shù),若,且,求函數(shù)在內的最小值.(用表示)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù)f(x)=(x _ 1)ex _ kx2(k∈R).
(Ⅰ)當k=1時,求函數(shù)f(x)的單調區(qū)間;
(Ⅱ)當k∈(1/2,1]時,求函數(shù)f(x)在[0,k]上的最大值M.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com