某旅行社租用A、B兩種型號的客車安排900名客人旅行,A、B兩種車輛的載客量分別為36人和60人,租金分別為1600元/輛和2400元/輛,旅行社要求租車總數(shù)不超過21輛,且B型車不多于A型車7輛.問怎樣安排車輛租金最少?最少為多少元?
考點(diǎn):簡單線性規(guī)劃的應(yīng)用
專題:應(yīng)用題,不等式的解法及應(yīng)用
分析:設(shè)分別租用A、B兩種型號的客車x輛、y輛,總租金為z元.可得目標(biāo)函數(shù)z=1600x+2400y,結(jié)合題意建立關(guān)于x、y的不等式組,計(jì)算A、B型號客車的人均租金,可得租用B型車的成本比A型車低,因此在滿足不等式組的情況下盡可能多地租用B型車,可使總租金最低.由此設(shè)計(jì)方案并代入約束條件與目標(biāo)函數(shù)驗(yàn)證,可得當(dāng)x=5、y=12時(shí),z達(dá)到最小值36800.
解答: 解:設(shè)分別租用A、B兩種型號的客車x輛、y輛,所用的總租金為z元,則z=1600x+2400y,
其中x、y滿足不等式組
36x+60y≥900
x+y≤21
y-x≤7
,(x、y∈N).
∵A型車租金為1600元,可載客36人,
∴A型車的人均租金是
1600
36
≈44.4元,
同理可得B型車的人均租金是
2400
60
=40元,
由此可得,租用B型車的成本比租用A型車的成本低.
因此,在滿足不等式組的情況下盡可能多地租用B型車,可使總租金最低.
由此進(jìn)行驗(yàn)證,可得當(dāng)x=5、y=12時(shí),可載客36×5+60×12=900人,符合要求,
且此時(shí)的總租金z=1600×5+2400×12=36800,達(dá)到最小值.
點(diǎn)評:根據(jù)實(shí)際問題,要求我們建立目標(biāo)函數(shù)和線性約束條件,并求目標(biāo)函數(shù)的最小值,著重考查了線性規(guī)劃知識,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an+Sn-1=0,其中Sn為{an}的前n項(xiàng)和,又bn+5log2(1-Sn)=t,t∈N*,數(shù)列{cn}滿足cn=an•bn.                                                       
(1)若{cn}是遞減數(shù)列,求t的最小值;                                                 
(2)在(1)的條件下,當(dāng)t取最小值時(shí),求數(shù)列{cn}的前n項(xiàng)和Tn;                       
(3)是否存在正整數(shù)k,使ck,ck+1,ck+2這三項(xiàng)按某種順序排列后成等比數(shù)列?若存在,求出k,t的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(2,1),
b
=(sinx,cosx),且
a
b

求值:(1)tanx               
(2)
3sinx-cosx
sinx+3cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
e-x
a
+
a
e-x
是定義在R上的函數(shù)
(1)f(x)可能是奇函數(shù)嗎?
(2)當(dāng)a=1時(shí),試研究f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:2x-3y+1=0,點(diǎn)A(-1,-2),求:
(1)點(diǎn)A關(guān)于直線l1的對稱點(diǎn)A1的坐標(biāo)
(2)直線 m:3x-2y-6=0關(guān)于直線l1的對稱直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

包含甲在內(nèi)的甲、乙、丙3個(gè)人練習(xí)傳球,設(shè)傳球n次,每人每次只能傳一下,首先從甲手中傳出,第n次仍傳給甲,共有多少種不同的方法?為了解決上述問題,設(shè)傳球n次,第n次仍傳給甲的傳球方法種數(shù)為an;設(shè)傳球n次,第n次不傳給甲的傳球方法種數(shù)為bn.根據(jù)以上假設(shè)回答下列問題:
(1)求出a1,a2,b1的值;
(2)根據(jù)你的理解寫出an+1與bn的關(guān)系式;
(3)求a5的值及通項(xiàng)公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

巳知橢圓M:
x2
a2
+
y2
b2
=1(a>b>0)的長軸長為4
2
,且與橢圓
x2
2
+
y2
4
=1有相同的離心率.
(Ⅰ)求橢圓M的方程;
(Ⅱ)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與M有兩個(gè)交點(diǎn)A、B,且
OA
OB
?若存在,寫出該圓的方程,并求|AB|的取值范圍,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種產(chǎn)品共x件,按1:2分為兩組檢查質(zhì)量,第一組平均質(zhì)量為3kg,方差為1,第二組平均質(zhì)量為6kg,方差為1,則全部產(chǎn)品的方差為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知純虛數(shù)z滿足(1+i)z=2m+i,其中i是虛數(shù)單位,則實(shí)數(shù)m的值等于
 

查看答案和解析>>

同步練習(xí)冊答案