【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知圓的參數(shù)方程為(為參數(shù),).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,取相同的長度單位建立極坐標(biāo)系,直線的極坐標(biāo)方程是.
(1)若直線與圓有公共點(diǎn),試求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),過點(diǎn)且與直線平行的直線交圓于兩點(diǎn),求的值.
【答案】(1) (2)
【解析】試題分析:(1)根據(jù)極坐標(biāo)與普通方程的互化公式求出直線的直角坐標(biāo)方程,消參得出圓的普通方程, 直線與圓有公共點(diǎn),則圓心到直線的距離,即可求出范圍;(2)將直線的參數(shù)方程代入曲線方程,根據(jù)t的幾何意義求值即可.
試題解析:
(1)由,
得,
即,
故直線的直角坐標(biāo)方程為.
由
得
所以圓的普通方程為.
若直線與圓有公共點(diǎn),則圓心到直線的距離,即,
故實(shí)數(shù)的取值范圍為.
(2)因?yàn)橹本的傾斜角為,且過點(diǎn),
所以直線的參數(shù)方程為(為參數(shù)),①
圓的方程為,②
聯(lián)立①②,得,
設(shè)兩點(diǎn)對應(yīng)的參數(shù)分別為,
則,,
故.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了提升學(xué)生“數(shù)學(xué)建模”的核心素養(yǎng),某校數(shù)學(xué)興趣活動(dòng)小組指導(dǎo)老師給學(xué)生布置了一項(xiàng)探究任務(wù):如圖,有一張邊長為27cm的等邊三角形紙片ABC,從中裁出等邊三角形紙片作為底面,從剩余梯形中裁出三個(gè)全等的矩形作為側(cè)面,圍成一個(gè)無蓋的三棱柱(不計(jì)損耗).
(1)若三棱柱的側(cè)面積等于底面積,求此三棱柱的底面邊長;
(2)當(dāng)三棱柱的底面邊長為何值時(shí),三棱柱的體積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)(其中)的圖象如圖所示,為了得到的圖象,則只要將的圖象上所有的點(diǎn)( )
A.向左平移個(gè)單位長度,縱坐標(biāo)縮短到原來的,橫坐標(biāo)不變
B.向左平移個(gè)單位長度,縱坐標(biāo)伸長到原來的3倍橫坐標(biāo)不變
C.向右平移個(gè)單位長度,縱坐標(biāo)縮短到原來的,橫坐標(biāo)不變
D.向右平移個(gè)單位長度,縱坐標(biāo)伸長到原來的3倍,橫坐標(biāo)不變
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,,是以為斜邊的等腰直角三角形,為的中點(diǎn),為的中點(diǎn).
(1)求證:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年底,武漢發(fā)生了新冠肺炎疫情,2020年初開始蔓延.黨中央國務(wù)院面對“突發(fā)災(zāi)難”果斷采取措施,舉國上下,萬眾一心支援武漢,全國各地醫(yī)療隊(duì)陸續(xù)增援湖北,紛紛投身疫情防控與救治病人之中.為了分擔(dān)“抗疫英雄”的后顧之憂,某校教師志愿者開展“愛心輔導(dǎo)”活動(dòng),為抗疫前線醫(yī)務(wù)工作者子女開展在線輔導(dǎo).春節(jié)期間隨機(jī)安排甲乙兩位志愿者為一位初中生輔導(dǎo)功課共3次,每位志愿者至少輔導(dǎo)1次,每一次只有1位志愿者輔導(dǎo),到甲恰好輔導(dǎo)兩次的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)在上的單調(diào)性;
(2)是否存在正實(shí)數(shù),使與的圖象有唯一一條公切線,若存在,求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中,側(cè)面為菱形,在側(cè)面上的投影恰為的中點(diǎn),為的中點(diǎn).
(Ⅰ)證明:∥平面;
(Ⅱ)若,在線段上是否存在點(diǎn)(不與,重合)使得直線與平面成角的正弦值為若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的中心在坐標(biāo)原點(diǎn)O,其右焦點(diǎn)為F(1,0),以坐標(biāo)原點(diǎn)O為圓心,橢圓短半軸長為半徑的圓與直線x﹣y0的相切.
(1)求橢圓C的方程;
(2)經(jīng)過點(diǎn)F的直線l1,l2分別交橢圓C于A、B及C、D四點(diǎn),且l1⊥l2,探究:是否存在常數(shù)λ,使恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)對年銷售量(單位:)的影響.該公司對近5年的年宣傳費(fèi)和年銷售量數(shù)據(jù)進(jìn)行了研究,發(fā)現(xiàn)年宣傳費(fèi)(萬元)和年銷售量(單位:)具有線性相關(guān)關(guān)系,并對數(shù)據(jù)作了初步處理,得到下面的一些統(tǒng)計(jì)量的值.
(萬元) | 2 | 4 | 5 | 3 | 6 |
(單位:) | 2.5 | 4 | 4.5 | 3 | 6 |
(1)根據(jù)表中數(shù)據(jù)建立年銷售量關(guān)于年宣傳費(fèi)的回歸方程;
(2)已知這種產(chǎn)品的年利潤與,的關(guān)系為,根據(jù)(1)中的結(jié)果回答下列問題:
①當(dāng)年宣傳費(fèi)為10萬元時(shí),年銷售量及年利潤的預(yù)報(bào)值是多少?
②估算該公司應(yīng)該投入多少宣傳費(fèi),才能使得年利潤與年宣傳費(fèi)的比值最大.
附:問歸方程中的斜率和截距的最小二乘估計(jì)公式分別為,.
參考數(shù)據(jù):,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com