18.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{|{{{log}_2}x}|,\;0<x≤4}\\{{x^2}-12x+34\;,x>4}\end{array}}$,若方程f(x)=t,(t∈R)有四個不同的實數(shù)根x1,x2,x3,x4,則x1x2x3x4的取值范圍為(32,34).

分析 作函數(shù)f(x)=$\left\{{\begin{array}{l}{|{{{log}_2}x}|,\;0<x≤4}\\{{x^2}-12x+34\;,x>4}\end{array}}$的圖象,從而可得x1x2=1,且x3+x4=12,(4<x3<6-$\sqrt{2}$),從而解得.

解答 解:作函數(shù)f(x)=$\left\{{\begin{array}{l}{|{{{log}_2}x}|,\;0<x≤4}\\{{x^2}-12x+34\;,x>4}\end{array}}$的圖象如下,
,
結合圖象可知,-log2x1=log2x2
故x1x2=1,
令x2-12x+34=0得,x=6±$\sqrt{2}$,
令x2-12x+34=2得,x=6±2;
故x3+x4=12,(4<x3<6-$\sqrt{2}$),
故x1x2x3x4=x3x4
=x3(12-x3
=-(x3-6)2+36,
∵4<x3<6-$\sqrt{2}$,
∴-2<x3-6<-$\sqrt{2}$,
∴32<-(x3-6)2+36<34,
故答案為:(32,34).

點評 本題考查了數(shù)形結合的思想應用及學生的作圖能力,同時考查了配方法的應用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

8.下列說法錯誤的是( 。
A.命題p:“?x0∈R,x02+x0+1<0”,則¬p:“?x∈R,x2+x+1≥0”
B.命題“若x2-4x+3=0,則x=3”的逆否命題是假命題
C.命題“若m>0,則方程x2+x-m=0有實數(shù)根”的否定是“若m>0,則方程x2+x-m=0沒有實數(shù)根”
D.若p∧q為假命題,則p∨q為假命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.函數(shù)$f(x)=sin(ωx+φ)(ω>0,|φ|<\frac{π}{2})$在它的某一個周期內的單調減區(qū)間是$[\frac{5π}{12},\frac{11π}{12}]$.
(1)求f(x)的解析式;
(2)將y=f(x)的圖象先向右平移$\frac{π}{6}$個單位,再將圖象上所有點的橫坐標變?yōu)樵瓉淼?\frac{1}{2}$倍(縱坐標不變),所得到的圖象對應的函數(shù)記為g(x),若對于任意的$x∈[\frac{π}{8},\frac{3π}{8}]$,不等式|g(x)-m|<1恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知復數(shù)$z=-1+\sqrt{3}i$,則$\frac{1}{z}$=( 。
A.$-\frac{1}{4}-\frac{{\sqrt{3}}}{4}i$B.$-\frac{1}{4}+\frac{{\sqrt{3}}}{4}i$C.$\frac{1}{4}-\frac{{\sqrt{3}}}{4}i$D.$\frac{1}{4}+\frac{{\sqrt{3}}}{4}i$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.下列說法錯誤的是( 。
A.與眾數(shù)、中位數(shù)相比,平均數(shù)可以反映出更多的關于樣本數(shù)據(jù)全體的信息
B.標準差越大,數(shù)據(jù)的離散程度越大;標準差越小,數(shù)據(jù)的離散程度越小
C.人體的脂肪含量y與年齡x滿足回歸方程$\widehat{y}$=0.577x-0.448,當x=37時,$\widehat{y}$=0.209,這表明某人37歲時,其體內的脂肪含量一定是20.9%
D.在樣本數(shù)據(jù)較少時,用莖葉圖表示數(shù)據(jù)不但可以保留數(shù)據(jù)的全部信息,而且可以隨時記錄

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知函數(shù)y=f(x)的圖象是由y=sin2x向右平移$\frac{π}{12}$得到,則下列結論正確的是(  )
A.f(0)<f(2)<f(4)B.f(2)<f(0)<f(4)C.f(0)<f(4)<f(2)D.f(4)<f(2)<f(0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.若loga3=m,loga5=n,則a2m+n=75.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.設直線l1:ax-by+4=0,l2:(a-1)x+y+b=0,求滿足下列條件的a,b的值.
(1)l1⊥l2,且l1過點M(-3,-1);
(2)l1∥l2,且l1,l2在y軸上的截距互為相反數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.拋物線y=$\frac{1}{2}$x2被直線y=x+4截得的線段的長度是( 。
A.$\sqrt{2}$B.2$\sqrt{6}$C.$\sqrt{6}$D.6$\sqrt{2}$

查看答案和解析>>

同步練習冊答案