若函數(shù)y=
x+4
2-x
,則此函數(shù)定義域為
 
考點:函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)成立的條件,即可求出函數(shù)的定義域.
解答: 解:要使函數(shù)有意義,則2-x≠0,即x≠2,
則函數(shù)的定義域為{x|x≠2},
故答案為:{x|x≠2}
點評:本題主要考查函數(shù)定義域的求解,要求熟練掌握常見函數(shù)成立的條件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
1
2
,短軸的兩個端點分別為B1、B2,焦點為F1、F2,四邊形F1B1F2B2的內(nèi)切圓半徑為
3
2

(1)求橢圓C的方程;
(2)過左焦F1點的直線交橢圓于M、N兩點,交直線x=-4于點P,設(shè)
PM
MF1
PN
NF2
,試證λ+μ為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱ABC-A1B1C1的側(cè)棱AA1⊥平面ABC,△ABC為等邊三角形,側(cè)面AA1C1C是正方形,E是A1B的中點,F(xiàn)是棱CC1上的點.
(1)若F是棱CC1中點時,求證:AE⊥平面A1FB;
(2)當(dāng)VE-ABF=9
3
時,求正方形AA1C1C的邊長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tan
α
2
=
1
3
,則cosα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

極坐標(biāo)系(ρ,θ)(0≤θ<2π)中,點(1,0)關(guān)于直線2ρsinθ=1對稱的點的極坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三棱錐S-ABC的所有頂點都在球O的表面上,SA⊥平面ABC,AB⊥BC,又SA=AB=BC=1,則球O的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,曲線C的離心率為
2
,且過點(1,
2
),則曲線C的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cos(π-α)=-
1
2
2
<α<2π,則sin(2π-α)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)滿足f(x)+1=
1
f(x+1)
,當(dāng)x∈[0,1]時,f(x)=x,若在區(qū)間(-1,1]上,方程f(x)-mx-2m=0有兩個實數(shù)解,則實數(shù)m的取值范圍是( 。
A、0<m≤
1
3
B、0<m<
1
3
C、
1
3
<m≤l
D、
1
3
<m<1

查看答案和解析>>

同步練習(xí)冊答案