分析 (1)通過(guò)2Sn=an+$\frac{1}{{a}_{n}}$計(jì)算出數(shù)列的前幾項(xiàng),進(jìn)而猜想通項(xiàng)公式,利用數(shù)學(xué)歸納法證明即可;
(2)通過(guò)(1)分母有理化可知bn=(-1)n($\sqrt{n}$+$\sqrt{n-1}$),進(jìn)而分n為奇數(shù)、偶數(shù)兩種情況討論即可.
解答 解:(1)∵Sn為an與$\frac{1}{{a}_{n}}$的等差中項(xiàng),
∴2Sn=an+$\frac{1}{{a}_{n}}$,
當(dāng)n=1時(shí),易知a1=1,
當(dāng)n=2時(shí),2+2a2=a2+$\frac{1}{{a}_{2}}$,
整理得:${{a}_{2}}^{2}$+2a2-1=0,
解得:a2=$\sqrt{2}$-1或a2=-$\sqrt{2}$-1(舍),
當(dāng)n=3時(shí),2$\sqrt{2}$+2a3=a3+$\frac{1}{{a}_{3}}$,
整理得:${{a}_{3}}^{2}$+2$\sqrt{2}$a3-1=0,
解得:a3=$\sqrt{3}$-$\sqrt{2}$或a3=$\sqrt{3}$-$\sqrt{2}$(舍),
…
猜想:an=$\sqrt{n}$-$\sqrt{n-1}$.
下面用數(shù)學(xué)歸納法來(lái)證明:
①當(dāng)n=1時(shí),結(jié)論顯然成立;
②假設(shè)當(dāng)n=k-1(k≥2)時(shí)成立,即ak-1=$\sqrt{k-1}$-$\sqrt{k-2}$,
則2Sk=ak+$\frac{1}{{a}_{k}}$,即2$\sqrt{k-1}$+ak-$\frac{1}{{a}_{k}}$=0,
整理得:${{a}_{k}}^{2}$+2$\sqrt{k-1}$ak-1=0,
解得:ak=$\sqrt{k}$-$\sqrt{k-1}$或ak=-$\sqrt{k}$-$\sqrt{k-1}$(舍),
即當(dāng)n=k時(shí)結(jié)論也成立;
由①②可知an=$\sqrt{n}$-$\sqrt{n-1}$.
(2)由(1)可知bn=$\frac{{(-1)}^{n}}{{a}_{n}}$=$\frac{(-1)^{n}}{\sqrt{n}-\sqrt{n-1}}$=(-1)n($\sqrt{n}$+$\sqrt{n-1}$),
當(dāng)n為奇數(shù)時(shí),Tn=-1+($\sqrt{2}$+1)-($\sqrt{3}$+$\sqrt{2}$)+…+($\sqrt{n-1}$+$\sqrt{n-2}$)-($\sqrt{n}$+$\sqrt{n-1}$)
=-$\sqrt{n}$,
當(dāng)n為偶數(shù)時(shí),Tn=-1+($\sqrt{2}$+1)-($\sqrt{3}$+$\sqrt{2}$)+…-($\sqrt{n-1}$+$\sqrt{n-2}$)+($\sqrt{n}$+$\sqrt{n-1}$)
=$\sqrt{n}$,
綜上所述,Tn=$\left\{\begin{array}{l}{-\sqrt{n},n為奇數(shù)}\\{\sqrt{n},n為偶數(shù)}\end{array}\right.$.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)及前n項(xiàng)和,考查數(shù)學(xué)歸納法,考查分類(lèi)討論的思想,注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{e}^{x}}{x}$ | B. | x2•lnx | C. | $\frac{{e}^{|x|}}{x}$ | D. | x•lnx2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | sin1•f($\frac{1}{2}$)>sin$\frac{1}{2}$•f(1) | B. | $\frac{1}{2}$•f($\frac{1}{2}$)>sin$\frac{1}{2}$•f($\frac{π}{6}$) | ||
C. | sin2•f(1)>sin1•f(2) | D. | f($\frac{π}{3}$)>$\sqrt{3}$f($\frac{π}{6}$) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com