【題目】2022年北京冬奧會的申辦成功與“3億人上冰雪”口號的提出,將冰雪這個冷項目迅速炒“熱”.北京某綜合大學(xué)計劃在一年級開設(shè)冰球課程,為了解學(xué)生對冰球運(yùn)動的興趣,隨機(jī)從該校一年級學(xué)生中抽取了100人進(jìn)行調(diào)查,其中女生中對冰球運(yùn)動有興趣的占,而男生有10人表示對冰球運(yùn)動沒有興趣額.

(1)完成列聯(lián)表,并回答能否有的把握認(rèn)為“對冰球是否有興趣與性別有關(guān)”?

有興趣

沒興趣

合計

55

合計

(2)已知在被調(diào)查的女生中有5名數(shù)學(xué)系的學(xué)生,其中3名對冰球有興趣,現(xiàn)在從這5名學(xué)生中隨機(jī)抽取3人,求至少有2人對冰球有興趣的概率.

附表:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

【答案】(1)有(2)

【解析】

(1)根據(jù)題中數(shù)據(jù)得到列聯(lián)表,然后計算出,與臨界值表中的數(shù)據(jù)對照后可得結(jié)論。(2)由題意得概率為古典概型,根據(jù)古典概型概率公式計算可得所求。

1)根據(jù)已知數(shù)據(jù)得到如下列聯(lián)表

有興趣

沒有興趣

合計

45

10

55

30

15

45

合計

75

25

100

由列聯(lián)表中的數(shù)據(jù)可得

因?yàn)?/span>,

所以有90%的把握認(rèn)為“對冰球是否有興趣與性別有關(guān)”.

(2)記5人中對冰球有興趣的3人為A、B、C,對冰球沒有興趣的2人為m、n,

則從這5人中隨機(jī)抽取3人,所有可能的情況為:(A,m,n),(B,m,n),(C,m,n),(A,B,m),

(A,B,n),(B,C,m),(B,C,n),(A,C,m),(A,C,n),(A,B,C),10種情況,

其中3人都對冰球有興趣的情況有(A,B,C),1種,2人對冰球有興趣的情況有(A,B,m),(A,B,n),(B,C,m),(B,C,n),(A,C,m),(A,C,n),6種,

所以至少2人對冰球有興趣的情況有7種,

因此,所求概率為。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是定義域?yàn)?/span>的函數(shù),對任意,都滿足:,且當(dāng)時,.

1)請指出在區(qū)間上的奇偶性、單調(diào)區(qū)間、零點(diǎn);

2)試證明是周期函數(shù),并求其在區(qū)間)上的解析式;

3)方程有三個不等根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的上下兩個焦點(diǎn)分別為,過點(diǎn)軸垂直的直線交橢圓兩點(diǎn),的面積為,橢圓的長軸長是短軸長的倍.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)已知為坐標(biāo)原點(diǎn),直線軸交于點(diǎn),與橢園交于兩個不同的點(diǎn),若存在實(shí)數(shù),使得,求的取值范圍,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知、是定義在實(shí)數(shù)集上的實(shí)值函數(shù),如果存在,使得對任何,都有,那么稱高興,如果對任何,都存在,使得,那么稱幸運(yùn),對于實(shí)數(shù)和上述函數(shù),定義.

1)①,判斷是否比高興?

,判斷是否比幸運(yùn)?

2)判斷下列命題是否正確?并說明理由:

①如果高興,高興,那么高興;

②如果幸運(yùn),幸運(yùn),那么幸運(yùn);

3)證明:對每個函數(shù),均存在函數(shù),使得對任何實(shí)數(shù)都比幸運(yùn),也比幸運(yùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知偶函數(shù)滿足,當(dāng)時,,關(guān)于的不等式上有且只有200個整數(shù)解,則實(shí)數(shù)的取值范圍為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)a0,a≠1).

1)判斷并證明函數(shù)fx)的奇偶性;

2)若ft2t1+ft2)<0,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ln(a x)+bx在點(diǎn)(1,f(1))處的切線是y=0;

(I)求函數(shù)f(x)的極值;

(II)當(dāng)恒成立時,求實(shí)數(shù)m的取值范圍(e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)當(dāng)時,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓長軸的一個端點(diǎn)是拋物線的焦點(diǎn),且橢圓焦點(diǎn)與拋物線焦點(diǎn)的距離是1。

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若是橢圓的左右端點(diǎn),為原點(diǎn),是橢圓上異于的任意一點(diǎn),直線分別交軸于,問是否為定值,說明理由。

查看答案和解析>>

同步練習(xí)冊答案