【題目】如圖,在四棱錐中,底而為菱形,且菱形所在的平面與所在的平面相互垂直,,,,.
(1)求證:平面;
(2)求四棱錐的最長側(cè)棱的長.
【答案】(1)證明見解析;(2)
【解析】
(1)在菱形中,,平面,平面,由此可證.
(2)取中點,連結(jié),,由已知易得:是正三角形,,進一步可證平面,由勾股定理可求出側(cè)棱,,,的長度,得到最長的是,或可先判斷CF最長,求解出長度即可.
(1)在菱形中,,平面,平面.
∴平面.
(2)方法一:取中點,連結(jié),,
由已知易得:是正三角形,∴.
又∴平面平面且交線為,∴平面,
又平面,∴,
又∵,,
∴平面,
又,平面,∴,,
在菱形中,,,,
,.
在中,.
在中,.
在中,,
∴.
顯然在側(cè)棱,,,中最長的是.
∴四棱錐的最長側(cè)棱的長為.
方法二:取中點,連結(jié),,
由已知易得:是正三角形,∴,
又∵平面平面且交線為,∴平面,
又平面,∴,
又∵,,∴平面.
又,平面∴,.
在菱形中,,,∴最長.
在中,.
∴四棱錐的最長側(cè)棱的長為.
科目:高中數(shù)學 來源: 題型:
【題目】圓錐(其中為頂點,為底面圓心)的側(cè)面積與底面積的比是,則圓錐與它外接球(即頂點在球面上且底面圓周也在球面上)的體積比為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間和的極值;
(2)對于任意的,,都有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某高校綜合評價有兩步:第一步是材料初審,若材料初審不合格,則不能進入第二步面試;若材料初審合格,則進入第二步面試.只有面試合格者,才能獲得該高校綜合評價的錄取資格,現(xiàn)有A,B,C三名學生報名參加該高校的綜合評價,假設(shè)A,B,C三位學生材料初審合格的概率分別是,,;面試合格的概率分別是,,.
(1)求A,B兩位考生有且只有一位考生獲得錄取資格的概率;
(2)記隨機變量X為A,B,C三位學生獲得該高校綜合評價錄取資格的人數(shù),求X的概率分布與數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某印刷廠為了研究單冊書籍的成本(單位:元)與印刷冊數(shù)(單位:千冊)之間的關(guān)系,在印制某種書籍時進行了統(tǒng)計,相關(guān)數(shù)據(jù)見下表:
印刷冊數(shù)(千冊) | |||||
單冊成本(元) |
根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲、乙兩種不同的回歸模型,得到兩個回歸方程,方程甲:,方程乙:.
(1)為了評價兩種模型的擬合效果,完成以下任務(wù).
①完成下表(計算結(jié)果精確到);
印刷冊數(shù)(千冊) | ||||||
單冊成本(元) | ||||||
模型甲 | 估計值 | |||||
殘差 | ||||||
模型乙 | 估計值 | |||||
殘差 |
②分別計算模型甲與模型乙的殘差平方和,并通過比較,判斷哪個模型擬合效果更好.
(2)該書上市之后,受到廣大讀者熱烈歡迎,不久便全部售罄,于是印刷廠決定進行二次印刷,根據(jù)市場調(diào)查,新需求量為千冊,若印刷廠以每冊元的價格將書籍出售給訂貨商,求印刷廠二次印刷千冊獲得的利潤?(按(1)中擬合效果較好的模型計算印刷單冊書的成本).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某小區(qū)為了了解業(yè)主用水情況,該小區(qū)分為一期和二期,入住共達4000戶,現(xiàn)在通過隨機抽樣獲得了100戶居民的月均用水量,下圖是調(diào)查結(jié)果的頻數(shù)分布表和頻率分布直方圖.
分組 | |||||
頻數(shù) | 4 | 8 | 15 | 22 | 25 |
分組 | |||||
頻數(shù) | 14 | 6 | 4 | 2 |
(1)估計該小區(qū)月均用水量超過3.8噸約有多少戶;
(2)通過頻率分布直方圖,估計該小區(qū)居民月均用水量平均值和中位數(shù)?查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場春節(jié)期間推出一項優(yōu)惠活動,活動規(guī)則如下:消費額每滿300元可轉(zhuǎn)動如圖所示的轉(zhuǎn)盤一次,并獲得相應金額的返券,假定指針等可能地停在任一位置.若指針停在區(qū)域Ⅰ返券60元;停在區(qū)域Ⅱ返券30元;停在區(qū)域Ⅲ不返券.例如:消費600元,可抽獎2次,所獲得的返券金額是兩次金額之和.
(Ⅰ)若某位顧客消費300元,求返券金額不低于30元的概率;
(Ⅱ)若某位顧客恰好消費600元,并按規(guī)則參與了活動,他獲得返券的金額記為(元).求隨機變量的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】雙曲線定位法是通過測定待定點到至少三個已知點的兩個距離差所進行的一種無線電定位.通過船(待定點)接收到三個發(fā)射臺的電磁波的時間差計算出距離差,兩個距離差即可形成兩條位置雙曲線,兩者相交便可確定船位.我們來看一種簡單的“特殊”狀況;如圖所示,已知三個發(fā)射臺分別為,,且剛好三點共線,已知海里,海里,現(xiàn)以的中點為原點,所在直線為軸建系.現(xiàn)根據(jù)船接收到點與點發(fā)出的電磁波的時間差計算出距離差,得知船在雙曲線的左支上,根據(jù)船接收到臺和臺電磁波的時間差,計算出船到發(fā)射臺的距離比到發(fā)射臺的距離遠30海里,則點的坐標(單位:海里)為( )
A.B.
C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com