【題目】(本小題共l4分)
已知函數(shù)f(x)=x +, h(x)=.
(I)設(shè)函數(shù)F(x)=f(x)一h(x),求F(x)的單調(diào)區(qū)間與極值;
(Ⅱ)設(shè)a∈R,解關(guān)于x的方程log4[]=1og2h(a-x)一log2h (4-x);
(Ⅲ)試比較與的大小.
【答案】(Ⅰ)見解析(Ⅱ)見解析;(Ⅲ)見解析
【解析】
(Ⅰ)先求導(dǎo)函數(shù),利用導(dǎo)函數(shù)大于0時(shí)原函數(shù)單調(diào)遞增,當(dāng)導(dǎo)函數(shù)小于0時(shí)原函數(shù)單調(diào)遞減.即可求的單調(diào)區(qū)間與極值;
(Ⅱ)先把原等式轉(zhuǎn)化為關(guān)于和之間的等量關(guān)系,最后利用圖象來求的值(注意對的討論).
(Ⅲ)把轉(zhuǎn)化為一新數(shù)列的前100項(xiàng)和,再比較新數(shù)列的每一項(xiàng)和對應(yīng)之間的大小關(guān)系,即可比較與的大。
解:(Ⅰ)由知,
,令,得.
當(dāng)時(shí),;
當(dāng),時(shí),.
故時(shí),是減函數(shù);
故,時(shí),是增函數(shù).
在處有極小值且.
(Ⅱ)原方程可化為,
即,
①當(dāng)時(shí),原方程有一解;
②當(dāng)時(shí),原方程有兩解;
③當(dāng)時(shí),原方程有一解;
④當(dāng)或時(shí),原方程無解.
(Ⅲ)設(shè)數(shù)列的前項(xiàng)和為,且
從而有.
當(dāng)時(shí),
,
.
即對任意的,都有.
又因?yàn)?/span>,
所以(1)(2).
故.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了積極穩(wěn)妥疫情期間的復(fù)學(xué)工作,市教育局抽調(diào)5名機(jī)關(guān)工作人員去某街道3所不同的學(xué)校開展駐點(diǎn)服務(wù),每個(gè)學(xué)校至少去1人,若甲、乙兩人不能去同一所學(xué)校,則不同的分配方法種數(shù)為___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:和圓:,,為橢圓的左、右焦點(diǎn),點(diǎn)在橢圓上,當(dāng)直線與圓相切時(shí),.
(Ⅰ)求的方程;
(Ⅱ)直線:與軸交于點(diǎn),且與橢圓和圓都相切,切點(diǎn)分別為,,記和的積分別為和,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x22(a+2)x+a2,g(x)=x2+2(a2)xa2+8.設(shè)H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max{p,q}表示p,q中的較大值,min{p,q}表示p,q中的較小值).記H1(x)的最小值為A,H2(x)的最大值為B,則AB=( )
A.a22a16B.a2+2a16
C.16D.16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,橢圓上的點(diǎn)到其左焦點(diǎn)的最大距離為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓左焦點(diǎn)的直線與橢圓交于兩點(diǎn),直線,過點(diǎn)作直線的垂線與直線交于點(diǎn),求的最小值和此時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知線段是過拋物線的焦點(diǎn)F的一條弦,過點(diǎn)A(A在第一象限內(nèi))作直線垂直于拋物線的準(zhǔn)線,垂足為C,直線與拋物線相切于點(diǎn)A,交x軸于點(diǎn)T,給出下列命題:
(1);
(2);
(3).
其中正確的命題個(gè)數(shù)為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),常數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.
(1)寫出及直線的直角坐標(biāo)方程,并指出是什么曲線;
(2)設(shè)是曲線上的一個(gè)動(dòng)點(diǎn),求點(diǎn)到直線的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的內(nèi)角,,的對邊分別為,,,.設(shè)為線段上一點(diǎn),,有下列條件:
①;②;③.
請從以上三個(gè)條件中任選兩個(gè),求的大小和的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com